Gradient descent with a general cost

Flavien Léger

joint works with Pierre-Cyril Aubin-Frankowski

1. A new family of algorithms

2. Convergence theory

3. Applications

Outline

Gradient descent as alternating minimization

General method unifies gradient/mirror/natural gradient/Riemannian descent

Generalized smoothness and convexity

Optimal transport theory → local characterizations

Global rates for Newton

Explicit vs. implicit Riemannian gradient descent

1. Gradient descent as minimizing movement

Two steps: 

1) majorize: find the tangent parabola (“surrogate”)

2) minimize: minimize the surrogate

\[x_{n+1}=x_n-\frac{1}{L}\nabla f(x_n),\]

objective function \(f\colon \mathbb{R}^d\to\mathbb{R}\)

\(f\) is \(L\)-smooth if \[\nabla^2f\leq L I_{d\times d}\]

D E F I N I T I O N

\[f(x)\]

\[\leq\]

\[f(x_n)+\langle\nabla f(x_n),x-x_n\rangle+\frac{L}{2}\lVert x-x_n\rVert^2\]

Reformulating the majorize step

Majorize step  ↔  \(y\)-update: 

\[y_{n+1} = \argmin_{y}\phi(x_n,y)\]

Minimize step  ↔  \(x\)-update:

\[x_{n+1} = \argmin_{x}\phi(x,y_{n+1})\]

Family of majorizing functions \(\phi(x,y)\)

\(\phi(\cdot,y_{n+1})\)

General cost

Given: \(X\) and \(f\colon X\to\mathbb{R}\)

Choose: \(Y\) and \(c(x,y)\)

\[f(x)\leq \underbrace{c(x,y)+f^c(y)}_{\phi(x,y)}\]

\(f\) is \(c\)-concave if

\[f(x)=\inf_{y\in Y}c(x,y)+f^c(y)\]

D E F I N I T I O N

\[f^c(y)=\sup_{x\in X}f(x)-c(x,y)\]

D E F I N I T I O N

\(c\)-transform

\(c(\cdot,y)+f^c(y)\)

(Moreau '66)

\(c(\cdot,y)+\lambda\)

\(c\)-concavity is smoothness

\(f\) is \(c\)-concave if

\[f(x)=\inf_{y\in Y}c(x,y)+f^c(y)\]

D E F I N I T I O N

\(f\) is \(c\)-concave

\(f\) is not \(c\)-concave

\(c(x,y)=\frac{L}{2}\lVert x-y\rVert^2\)

\(f\) is \(c\)-concave \(\iff \nabla^2 f\leq L I_{d\times d}\)

Example

\[\inf_{x}f(x)=\inf_{x,y}c(x,y)+f^c(y)\]

Gradient descent with a general cost

(FL–PCAF '23)

\begin{aligned} y_{n+1} &= \argmin_{y\in Y} c(x_n,y)+f^c(y)\\ x_{n+1} &= \argmin_{x\in X} c(x,y_{n+1})+f^c(y_{n+1}) \end{aligned}
\begin{aligned} -\nabla_xc(x_n,y_{n+1})&=-\nabla f(x_n)\\ \nabla_xc(x_{n+1},y_{n+1})&=0 \end{aligned}

“majorize”

“minimize”

A L G O R I T H M

\(\phi(\cdot,y_{n+1})\)

\(\phi(x,y)=c(x,y)+f^c(y)\)

\(-\nabla_xc(x_n,y_{n+1})=-\nabla f(x_n)\)

\(y_{n+1}=\operatorname{c-exp}_{x_n}(-\nabla f(x_n))\)

\(\iff\)

Some examples

\(\,\,\,c(x,y)=\underbrace{u(x)-u(y)-\langle\nabla u(y),x-y\rangle}_{\qquad\quad\eqqcolon \,u(x|y)} \longrightarrow\)  mirror descent

\(\,\,\,c(x,y)=u(y|x) \longrightarrow\)  natural gradient descent

\(\,\,\,c(x,y)=\frac{L}{2}d_M^2(x,y)\longrightarrow\)  Riemannian gradient descent

Newton

\[\nabla u(x_{n+1})-\nabla u(x_n)=-\nabla f(x_n)\]

\[x_{n+1}-x_n=-\nabla^2 u(x_n)^{-1}\nabla f(x_n)\]

\[x_{n+1}=\exp_{x_n}(-\frac{1}{L}\nabla f(x_n))\]

1. A new family of algorithms

2. Convergence theory

3. Applications

Gradient descent as alternating minimization

General method unifies gradient/mirror/natural gradient/Riemannian descent

Generalized smoothness and convexity

Optimal transport theory → local characterizations

Global rates for Newton

Explicit vs. implicit Riemannian gradient descent

2. Cross-convexity

\(f\) is \(\lambda\)-strongly \(c\)-cross-convex if for all \(x,x_n,\)

\[f(x) \geq f(x_n) + \delta_c(x,y_n;x_n,y_{n+1})+\lambda(c(x,y_n)-c(x_n,y_n)).\]

D E F I N I T I O N

\begin{aligned} -\nabla_xc(x_n,y_{n+1})&=-\nabla f(x_n)\\ \nabla_xc(x_{n},y_{n})&=0 \end{aligned}

\(\delta_c(x',y';x,y)=[c(x,y')+c(x',y)]-[c(x,y)+c(x',y')]\)

Cross-difference:

Example:  \(c(x,y)=\frac{L}{2}\lVert x-y\rVert^2\)

\[f(x)\geq f(x_n)+\langle\nabla f(x_n),x-x_n\rangle +\frac{\lambda L}{2}\lVert x-x_n\rVert^2\]

Convergence rates

If \(f\) is \(c\)-concave and \(c\)-cross-convex then 

\[f(x_n)\le f(x) + \frac{c(x,y_0)-c(x_0,y_0)}{n}.\]

 

If \(f\) is \(\lambda\)-strongly \(c\)-cross-convex with \(0<\lambda<1\), then

\[f(x_n)\le f(x) + \frac{\lambda \,(c(x,y_0)-c(x_0,y_0))}{\Lambda^n-1},\]

where \(\Lambda\coloneqq(1-\lambda)^{-1}>1\).

T H E O R E M   (FL–PCAF '23)

\[\left.\begin{aligned}f(x_{n+1})\leq c(x_{n+1},y_{n+1})+f^c(y_{n+1})\\~\end{aligned}\right\}\]

\(\implies f(x_{n+1})\leq f(x_{n})- [c(x_{n},y_{n+1})-c(x_{n+1},y_{n+1})]\)

\(f(x_{n+1}) \leq f(x)+ [c(x,y_n)-c(x_n,y_n)]\)

Proof.

\(f(x_{n})= c(x_{n},y_{n+1})+f^c(y_{n+1})\)

\(f(x_{n}) \leq f(x)+ c(x,y_n)-c(x,y_{n+1})\)

\(\implies\)

\(+c(x_n,y_{n+1})-c(x_{n},y_{n})\)

\(- [c(x,y_{n+1})-c(x_{n+1},y_{n+1})]\)

(“Fenchel–Young inequality”)

(\(c\)-concavity)

(cross-convexity)

The Kim–McCann geometry

\(\delta_c(x+\xi,y+\eta;x,y)=\underbrace{-\nabla^2_{xy}c(x,y)(\xi,\eta)}_{\text{Kim--McCann metric ('10)}}+o(\lvert\xi\rvert^2+\lvert\eta\rvert^2)\)

\(\delta_c(x',y';x,y)=\)

\[\inf_{\pi\in\Pi(\mu,\nu)}\iint_{X\times Y}c(x,y)\,\pi(dx,dy)\]

\([c(x,y')+c(x',y)]-[c(x,y)+c(x',y')]\)

➡ Kim–McCann geodesics

➡ Kim–McCann curvature: cross-curvature

Cross-curvature

The cross-curvature or Ma–Trudinger–Wang tensor is

\[\mathfrak{S}_c(\xi,\eta)=(c_{ik\bar s} c^{\bar s t} c_{t \bar\jmath\bar\ell}-c_{i\bar \jmath k\bar\ell}) \xi^i\eta^{\bar\jmath}\xi^k\eta^{\bar\ell}\]

(Ma–Trudinger–Wang ’05)

\[c_{i\bar \jmath}=\frac{\partial^2c}{\partial x^i\partial y^{\bar\jmath}},\dots\]

D E F I N I T I O N

T H E O R E M   (Kim–McCann '11)

\[\mathfrak{S}_c\geq 0 \iff c(x(t),y)-c(x(t),y')\text{ convex in } t\]

for any Kim–McCann geodesic \(t\mapsto (x(t),y)\)

A local criteria for cross-convexity 

 

Suppose that for all \(\bar x\in X\), there exists \(\hat y\in Y\) satisfying \(-\nabla_xc(\bar x,\hat y)=-\nabla f(\bar x)\) and such that

\[\nabla^2f(\bar x) \leq \nabla^2_{xx}c(\bar x,\hat y).\]

Then \(f\) is \(c\)-concave. 

T H E O R E M (Trudinger–Wang '06)

Suppose that \(c\) has nonnegative cross-curvature.

Let \(\lambda>0\). Suppose that \[t\mapsto f(x(t))-\lambda c(x(t),\bar y)\] is convex on every Kim–McCann geodesic \(t\mapsto (x(t),\bar y)\) satisfying \(\nabla_xc(x(0),\bar y)=0\). Then \(f\) is \(\lambda\)-strongly \(c\)-cross-convex.

T H E O R E M   (FL–PCAF '23)

1. A new family of algorithms

2. Convergence theory

3. Applications

Gradient descent as alternating minimization

General method unifies gradient/mirror/natural gradient/Riemannian descent

Generalized smoothness and convexity

Optimal transport theory → local characterizations

Global rates for Newton

Explicit vs. implicit Riemannian gradient descent

Global rates for Newton's method

\(c(x,y)=u(y|x)\longrightarrow\)  Natural gradient descent:   

\[x_{n+1}-x_n=-\nabla^2u(x_n)^{-1}\nabla f(x_n)\]

Newton's method: new global convergence rate.

New condition on \(f\) similar but different from self-concordance

T H E O R E M (FL–PCAF '23)

If \[\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\leq \nabla^2f\leq \nabla^2u+\nabla^3u(\nabla^2u^{-1}\nabla f,-,-)\] then

\[f(x_n)\leq f(x)+\frac{u(x_0|x)}{n}\]

Explicit vs. implicit Riemannian

\(c(x,y)=\frac{1}{2\tau} d_M^2(x,y)\)

2. Implicit:   \(x_{n+1}=\argmin_{x} f(x)+\frac{1}{2\tau}d^2(x,x_n)\)

    \(R\leq 0\): \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

Wasserstein gradient flows, generalized geodesics (Ambrosio–Gigli–Savaré '05)

da Cruz Neto, de Lima, Oliveira ’98

Bento, Ferreira, Melo ’17

1. Explicit:   \(x_{n+1}=\exp_{x_n}\big(-\tau\nabla f(x_n)\big)\)

    \(R\geq 0\): (smoothness and) \(\nabla^2f\geq 0\) gives \(O(1/n)\) convergence rates

    \(R\leq 0\): ? (nonlocal condition)

\[\operatorname*{minimize}_{x\in M} f(x)\]

    \(R\geq 0\): if \(\mathfrak{S}_c\geq 0\) then convexity of \(f\) on Kim–McCann geodesics gives \(O(1/n)\) convergence rates

Thank you!

(SPO 2023-12-04) Gradient descent with a general cost

By Flavien Léger

(SPO 2023-12-04) Gradient descent with a general cost

  • 198