Transistors

OLD TRANSISTORS: VACUUM TUBES

BIPOLAR JUNCTION TRANSISTORS: PNP and NPN

N-Type

P-Type

N-Type

P-Type

N-Type

P-Type

Emitter

Base

Emitter

Base

Collector

Collector

PNP

NPN

BJT TRANSISTORS: Parameters

w_B

Emitter

Base

Collector

N_{A,E} \approx10^{18}-10^{20}
N_{A,C} \approx 10^{14}-10^{16}
N_{D,B} \approx 10^{16}-10^{18}
\begin{cases} w_B \leq L_p \approx 50 \mu m\\ N_{A,E} \gg N_{A,B} > N_{A,C} \end{cases}

Geometrical and doping conditions

BJT TRANSISTORS: Operation Modes

Emitter

Base

Collector

Emitter

Base

Collector

Emitter

Base

Collector

Emitter

Base

Collector

Forward Active

Reverse Active

Saturation

Cutoff

  • EB: Forward bias

  • BC: Reverse Bias

  • EB: Reverse bias

  • BC: Forward Bias

  • EB: Forward bias

  • BC: Forward Bias

  • EB: Reverse bias

  • BC: Reverse Bias

+ -

+ -

- +

- +

+ -

- +

- +

+ -

BJT PNP TRANSISTOR: Forwad Active Mode

Emitter

Base

Collector

+ -

+ -

I_E
I_C
I_B
\begin{cases} I_{E} = I_{B} + I_{C} \\ I_{C} = \beta I_{B} \\ I_{C} = \alpha I_{E} \\ \beta \gg 1 \approx 100-1000 \\ \alpha \approx 1 \end{cases}
\beta = \mathrm{Gain}
Electrons
Holes

Diffusion

Drift

FORWARD ACTIVE MODE: Current Magnitudes and Relationships

p_n(x=0)

Emitter

Base

Collector

\begin{cases} \\ \\ \\ \end{cases}
p_n(x)
\begin{cases} J_{D,p}=e D_p \frac{d p_n(x)}{d x} \\[3pt] \frac{d p_n(x)}{d x} = \frac{\Delta p_n(x)}{\Delta x} = \frac{p_n(x=0)}{w_{B}} \\[3pt] p_n(x=0) = p_{n0} e^{\frac{e V_{ext}}{k_B T}} \\[3pt] p_{n0} = \frac{n_i^2}{N_D} \end{cases}\\ \Downarrow\\ J_{D,p} \approx e D_p \frac{n_i^2}{N_D w_{B}} e^{\frac{e V_{ext}}{k_B T}}
w_B
J_{D,n}=e D_n \frac{d n_p(x)}{d x} = e D_n \frac{d \Delta n_p(x)}{d x} \\[5pt] \Downarrow\\[3pt] J_{D,n}=\frac{e D_n}{L_n} \Delta p_n(0)=\frac{e D_n}{L_n}\left(n_p(0)-n_{p 0}\right) \\ J_{D,n}=\frac{e D_n n_{p 0}}{L_n}\left[\exp \left(\frac{e V}{k_B T}\right)-1\right] \\ \Downarrow\\[3pt] J_{D,n} \approx \frac{e D_n n_i^2}{L_n N_A} e^{\frac{e V_{ext}}{k_B T}}

Hole Current Density

Electron Current Density

\frac{J_{D,p}}{J_{D,n}} \approx \frac{I_C}{I_B} \propto \frac{N_{A,E}}{N_{D,B}} \approx \beta

PRACTICAL CIRCUITS: Current flowing through a loaded PN junction

\begin{cases} I_{PN}=I_{s 0}\left[\exp \left(\frac{e V_{PN}}{k_B T}\right)-1\right] \\ I_{R} R + V_{PN} = V_{0} \\ I_{R} = I_{PN} \end{cases} \Rightarrow I_{R} = \frac{V_{0}}{R} - \frac{V_{PN}}{R} \\ \Downarrow \\ V_{PN} \approx 0.7V

PRACTICAL CIRCUITS: Common Emitter Amplifier

Common Emitter

Thevenin Equivalent

V\(_{0}\)=10V

V\(_{0}\)=10V

V\(_{B}\)=5 V

Copy of Materials and Platforms for AI - Transistors

By Giovanni Pellegrini

Copy of Materials and Platforms for AI - Transistors

  • 33