OPTIMIZATION, NEURAL NETWORKS AND INVERSE DESIGN

FROM NANOPHOTONICS TO COMPUTATIONAL IMAGING

Giovanni Pellegrini @

WHO AM I?

Giovanni Pellegrini

Associate Professor - Physics Department - University of Pavia

Research Interests

- Computational Nanophotonics

- Machine Learning and Optimization for Nanophotonics

- Machine Learning for Image Reconstruction

- Machine Learning for Signal Processing

Also interested in

- Industrial Automation and Robotics

- Deep Learning for Machine Vision

- Both @ Sinteco Robotics

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

OPTIMIZATION, NEURAL NETWORKS AND INVERSE DESIGN

FROM NANOPHOTONICS TO COMPUTATIONAL IMAGING

GENETIC MULTI-OBJECTIVE OPTIMIZATION FOR INVERSE DESIGN OF 1DPC

SUPERVISED NEURAL NETWORKS FOR DIRECT AND INVERSE DESIGN OF NANOHOLE ARRAYS

SUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PHASE RETRIEVAL

UNSUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PTYCHOGRAPHY

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETIC MULTI-OBJECTIVE OPTIMIZATION FOR INVERSE DESIGN OF 1D PHOTONIC CRYSTALS

Giovanni Pellegrini, Jonathan J. Barolak, Marco Finazzi, Michele Celebrano, F. Michelotti, A. Occhicone and Paolo Biagioni

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

CHIRALITY (IN NATURE)

Molecules

DNA

Proteins

L Enantiomer

R Enantiomer

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

PROBING CHIRALITY WITH ELECTROMAGNETIC FIELDS

TE Polarization

TM Polarization

Left = TE + i*TM

Right = TE - i*TM

Circular Dichroism (CD)

Optical Rotation (\(\psi\))

\[\mathrm{CD = A_{R}-A_{L}}\]

\[\mathrm{\psi = \Delta \theta} \]

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

SUPERCHIRAL LIGHT

Local optical chirality

C = -\frac{\varepsilon_{0} \omega}{2} Im(\mathrm{\mathbf{E}}^{*} \cdot \mathrm{\mathbf{B}})

Optical chirality enhancement

\frac{C}{C_{\mathrm{CPL}}}

Finazzi, Marco, et al. "Quasistatic limit for plasmon-enhanced optical chirality." Physical Review B 91.19 (2015): 195427.

Schäferling, Martin. "Chiral nanophotonics." Springer Series in Optical Sciences 205 (2017): 159.

Mattioli, F. et al. Plasmonic Superchiral Lattice Resonances in the Mid-Infrared. ACS Photonics 7, 2676–2681 (2020)

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

SUPERCHIRAL LIGHT WITH A PLANAR GEOMETRY

  • Large optical chirality enhancement

  • Uniformity over large areas

  • Optical chirality switching

  • Broadband operation

  • Flat spectral response

Planar Geometries as an Ideal Candidate

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

A PLANAR GEOMETRY FOR SUPERCHIRAL LIGHT: TAKE 1

TE ± i*TM

TE ± i*TM

Surface Plasmon

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

A PLANAR GEOMETRY FOR SUPERCHIRAL LIGHT: TAKE 2

Dipartimento di Fisica - Università di Pavia

\[ \mathrm{ (\lambda_{TM},\theta_{TM})} \]

\[ \mathrm{ (\lambda_{TE},\theta_{TE})} \]

\[ \mathrm{ (\lambda_{TM},\theta_{TM})} \neq \mathrm{ (\lambda_{TE},\theta_{TE})} \]

Bloch Surface Waves (BSW)

TE ± i*TM

TE ± i*TM

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

ALIGNING THE DISPERSION RELATIONS

\[ \mathrm{ (\lambda_{TM},\theta_{TM})} \neq \mathrm{ (\lambda_{TE},\theta_{TE})} \]

\[ \mathrm{ (\lambda_{TM},\theta_{TM})} = \mathrm{ (\lambda_{TE},\theta_{TE})} \]

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

AN INVERSE DESIGN SOLUTION

GENETIC MULTI OBJECTIVE OPTIMIZATION

\omega_1 \, (\lambda_1)
\omega_2 \, (\lambda_2)
\begin{cases} C(\omega_1) = -\frac{\varepsilon_{0} \omega_1}{2} Im(\mathrm{\mathbf{E}}^{*} \cdot \mathrm{\mathbf{B}}) \\ C(\omega_2) = -\frac{\varepsilon_{0} \omega_2}{2} Im(\mathrm{\mathbf{E}}^{*} \cdot \mathrm{\mathbf{B}}) \end{cases}

Maximize \(C \)

@ \(\omega_1\) and \(\omega_2\)

@ the 1DPC Surface

SIMULTANEOUSLY!!! 

Band Alignement

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETIC MULTI-OBJECTIVE OPTIMIZATION: NSGAII

Vilfredo Pareto

\mathbf{t}= \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ ... \\ t_i \\ ... \\ t_n \\ \end{pmatrix} \in \mathbb{R}^{n} =

Mixing

Mutation

Selection

1st Gen.

2nd Gen.

n-th Gen.

Evolution

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETICALLY EVOLVED (NSGAII) SiO₂-Ta₂O₅ 1PDC

SiO\(_{2}\)

Ta\(_{2}\)O\(_{5}\)

SiO\(_{2}\)

Ta\(_{2}\)O\(_{5}\)

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETICALLY EVOLVED (NSGAII) SIO2-SIOX 1PDC

SiO\(_{2}\)

SiO\(_{x}\)

SiO\(_{2}\)

SiO\(_{x}\)

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETICALLY EVOLVED (NSGAII) POLYMERIC 1PDC

Cellulose

Polystyrene

Cellulose

Polystyrene

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

GENETIC MULTI-OBJECTIVE INVERSE DESIGN

FINAL CONSIDERATIONS

  • Multiple Objectives

  • Global

  • Robust

  • Flexible

  • Physical Insight

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

SUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR DIRECT AND INVERSE DESIGN OF NANOHOLE ARRAYS

n.1 n.2 n.3
Lattice Hexagonal Square Square
Material Ag Au SiOx
Thickness (nm) 100 115 90
Radius
(nm)
60 110 140
Pitch
(nm)
450 550 515

DIRECT

INVERSE

Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.

Structural parameters

spectra

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

INVERSE DESIGN WITH NEURAL NETWORK: A TOY PROBLEM

OPTICAL PROPERTIES OF NANOHOLE ARRAYS

Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE NOTEBOOKS AND THE TUTORIAL SLIDES

Data analysis

Direct model

Inverse model

Slides for the full tutorial

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

A "TOY" PROBLEM FOR OUR TUTORIAL

OPTICAL PROPERTIES OF NANOHOLE ARRAYS

n.1 n.2 n.3
Lattice Hexagonal Square Square
Material Ag Au SiOx
Thickness (nm) 100 115 90
Radius
(nm)
60 110 140
Pitch
(nm)
450 550 515

DIRECT

INVERSE

Jahan, T. et al. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale (2024) doi:10.1039/D4NR03081H.

Structural parameters

spectra

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

IN PRACTICE

Lattice Hexagonal
Material Ag
Thickness (nm) 100
Radius
(nm)
60
Pitch
(nm)
450
\Rightarrow x= \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ \end{pmatrix} \in \mathbb{R}^{5}
\Rightarrow \begin{cases} p_1 \in \{0,1\}\\ p_2 \in \{0,1,2\}\\ p_3,p_4,p_5 \in \mathbb{R} \\ \end{cases}
\Rightarrow y= \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \\ \vdots \\ t_{200} \\ \end{pmatrix} \in \mathbb{R}^{200}
\Rightarrow t_n \in [0,1]

Direct: \( g_{_{W}}:\mathbb{R}^{5} \to \mathbb{R}^{200} \)

Inverse: \( g_{_{W}}:\mathbb{R}^{200} \to \mathbb{R}^{5} \)

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

EXPLORING THE DATA:  PLOT

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE IMPORTANCE OF THE DATA

Credits: Alberto De Giuli

AI GENERATED

REAL PICTURE

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

MODEL PERFORMANCE: DIRECT PROBLEM

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

MODEL PERFORMANCE: INVERSE PROBLEM

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

SUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PHASE RETRIEVAL

Giovanni Pellegrini and Jacopo Bertolotti

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

HOW THIS COLLABORATION WAS BORN

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE PROBLEM

Scattering

Autocorr

Autocorr

Inversion

Inversion

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE IDEA: NEURAL NETWORK VS ITERATIVE METHODS

ALSO: We want to erode the correlation information!!!

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE IDEA: RECONSTRUCTING INCOMPLETE INFORMATION

  • Current phase retrieval techniques adopt iterative approaches to recover phase information from the modulus of the Fourier transform

  • We apply a circular erosion mask to the Fourier autocorrelation, in order to assess the performance of traditional methods in presence of partial information

  • We observe that traditional approaches struggle in the presence of incomplete information. We employ a deep neural network to overcome these limitations, and show that such and approach vastly over-performs traditional methods in a large variety of scenarios 

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

THE FUNDAMENTALS: DEFINING THE DATASET

  • We devise a synthetic dataset based on the MNIST handwritten digits as a benchmark for the reconstruction performance

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

DEFINING THE NEURAL NETWORK ARCHITECTURE

  • We adopt a deep convolutional autoencoder based on the DeepLabV3+ architecture with a L1 loss computed on the input and reconstructed autocorrelations

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

TAILORING THE TRAINING PROCESS

  • Phase 1: We train the network on full autocorrelation

  • Phase 2: We progressively erode the input autocorrelation, and train the network to reconstruct the missing information

  • Phase 3: We perform a final stabilization training

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

DEEP LEARNING: RESULTS

Deep Learning Vs Iterative

Deep Learning: exploration

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

UNSUPERVISED, PHYSICS INFORMED NEURAL NETWORKS FOR PTYCHOGRAPHY

Giovanni Pellegrini, Jonathan J. Barolak, Carmelo Grova, Charles S. Bevis,  Daniel E. Adams and Giulia F. Mancini

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

PTYCHOGRAPHY FOR DUMMIES

Complex Image

Complex Probe

Probe Raster on a Grid

Free Space

Propagation

Sample Plane

Image Plane

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

AN UNTRAINED, PHYSICS INFORMED NETWORK APPROACH

  • The reconstruction process happens with an untrained network on a physics-informed closed loop. The Neural Network substitutes entirely the iterative deterministic algorithm.

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

AN UNTRAINED, PHYSICS INFORMED NETWORK APPROACH

  • We tested the reconstruction performance against different probe grids

  • The physics informed neural network approach apparently allows for reconstructions with very sparse gridding

  • We devise a strategy to speedup the reconstruction

  • We adopt a warmup strategy reconstructing an unrelated dummy image with a similar probe

  • Without warmup the reconstruction does not reach convergence

  • With warmup the reconstruction quickly reaches convergence

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

HAPPY INVERSE DESIGNING!

Dipartimento di Fisica - Università di Pavia

UniPD 28 March 2025, Padova, Italy

UniPd2025Optimization

By Giovanni Pellegrini

UniPd2025Optimization

  • 67