Bonding through the eyes of quantum entanglement

ChangMo "David" Yang

17 Oct 2014

 

TWU visit

... a.k.a. David's

Informal portfolio

  • Field: quantum-many body problems
  • Methods: computational
    primarily quantum Monte Carlo
  • Thesis topic: Unconventional superfluid states in cold atoms

The real outline

  • Monte Carlo simulations in statistical physics
  • T=0 quantum Monte Carlo
  • T>0 quantum Monte Carlo
  • Recent publication on H2 and N2
  • Outlook: re-formulate chemical bonding?

Monte Carlo
in statistical physics

  • Simple Monte Carlo integration
  • Importance sampling
  • Metropolis–Hastings algorithm

Monte Carlo integration

Importance sampling

Sharply peaked distributions

Metropolis

When direct sampling is impossible/non-practical ...

eg. ρ~exp[-βH]

 

  1. Attempt a random
    trial displacement.
  2. Accept or reject
    according to ρnewold.
  3. Accumulate local observables.

Variational Monte Carlo

  • H=∑(ℏ²∇²/2m) + ∑∑vij
  • Parametrize Ψ({r})  Ψ({r};α)
  • Use |Ψ({r};α)|² as probability density
  • Optimize according to lowest E
    or lowest σE²

Diffusion Monte Carlo

  • Bullet One
  • Bullet Two
  • Bullet Three

Bonding as stated in genchem

  • Bullet One
  • Bullet Two
  • Bullet Three

More advanced qchem methods

  • Bullet One
  • Bullet Two
  • Bullet Three

Inadequacy of MO/VB

  • Bullet One
  • Bullet Two
  • Bullet Three

Quantum entanglement

  • Bullet One
  • Bullet Two
  • Bullet Three

Partial traces and Rényi entropies

  • Bullet One
  • Bullet Two
  • Bullet Three

Quantum Monte Carlo

  • Bullet One
  • Bullet Two
  • Bullet Three

Variational Monte Carlo

  • Bullet One
  • Bullet Two
  • Bullet Three

Some triumphs of QMC

  • Bullet One
  • Bullet Two
  • Bullet Three

Bonding through the eyes of quantum entanglement

By ChangMo “David” Yang

Bonding through the eyes of quantum entanglement

TWU talk

  • 32