The SKI Protocols

 A Distance Bounding RFID Protocol Family 

[Boureanu-Mitrokotsa-Vaudenay 2013]

Han Tüzün

Bilkent University

Outline

    • What is RFID?
    • Attacks
    • What is Distance-Bounding Protocols
    • Phases of DB RFID Protocols
    • Existing Protocols
    • The SKI Protocols
    • Overview of the SKI Protocols
    • Variations of the SKI 
    • Security Analysis of the SKI
    • My Critic
    • References
    

What is RFID?



    Radio-frequency identification

    Used in:
        • Passports
        • National ID Cards
        • Touch-Free Payment
        Identification
        • Automatic Pass Systems
        • Wireless Car Locks

Attacks



    • Relay Attack


    • Mafia-Fraud


    • Distance-Fraud


    • Terrorist-Fraud

Relay Attack

Grand Master Chess Problem

Mafia-Fraud

an adversary A tries to prove that 

a prover P is close to a verifier V

Mafia-Fraud


Distance-Fraud

a malicious prover P* tries to prove that

he is close to a verifier V 

Distance-Fraud


Terrorist-Fraud


a malicious prover P* helps an adversary A to prove that 

P* is close to a verifier V 

without giving A another advantage

Terrorist-Fraud

alibinetwork.net

What is Distance-Bounding RFID Protocols?


DBP = authentication + distance upper-bounding

Cryptographic protocols that enable a verifier V
to establish an upper bound 
on the pysical distance to a prover P


Rasmussen & Capkun, 2010
1 nanosecond  15 cm

Phases of DB RFID Protocols


Slow Transmission Phase(s):

Identification

Varible exchange

Signature exchange


Fast Phase:

Timing the delay between sending out a challenge

and receiving back the corresponding response


Popular DB RFID Protocols



    • Hancke & Kuhn (2005)

    • Swiss-Knife Protocol (2008)

    • Avione et al. (2011)

Hancke & Kuhn (2005)


How to cope with TF?


    • P* helps T
    • P* does not give her key to T 

    Aim:
    • If P* shares too many information with T,
       the protocol must reveal the key of P*

    • For a honest P, the protocol 
       must not reveal the key

The SKI Protocols



Overview of the SKI Protocols


    • Pre-shared keys

    • One slow phase

    • Has variations

    • Data transfer other than bits in fast phase

    • Possible use of linear mapping on the key


Variables q , t and t'




          q : Size of the responses domain

          t : Size of the challenges domain

          t' : Security parameter 
                     (Maximum number of registers that can be shared securely)

Linear Transformation ( )



    • Protection against a TF by Hackne 
                             




      • In SKI, the adversary can get to learn L(x) + e


    The Response-Function F


    for i = 1 to n, i-th response produced by the following F:

    where c i ∈ {1, . . . , t}, x′ GF(q), q ≥ 2, 
    (a i ) j GF(q),  j ∈ {1, . . . , t′}, and 
    1R is 1 if R  is true and 0 otherwise.

    Variations of the SKI Protocols

    q, t, t', F


    SKI pro

        
        q = 2, t = 3 , t'  = 2 , i.e.,
     
        F(c i , a i , x' i ) = (a i ) c i   for c i ϵ {1, 2} 

        F(3, a i , x' i ) = x' i (a i ) 1 (a i ) 2 , with  

        (a i ) 1   (a i ) 2  , x i   ϵ GF(2), and  

        ℒ =  bit

    SKI lite

        
        q = 2t = t' = 2 , i.e.,
     
        F(c i , a i , x' i ) = (a i ) c i   for c i ϵ {1, 2} with  

        (a i ) 1   (a i ) 2  ϵ GF(2)and  

        ℒ = Ø
     

    Security Analysis of the SKIpro


        • Framework for Security Analysis 

                     

        •  Impersonation?


        • Distance-Fraud Resistance


        • Mafia-Fraud  Resistance


        • Terrorist-Fraud Resistance

    Impersonation?


    an adversary  A tries to prove that

    a prover  P is close to a verifier  V


    Distance-Fraud Scheme

    Distance-Fraud Probability





    Mafia-Fraud Scheme

    Mafia-Fraud Probability



    Terrorist-Fraud Scheme

    Terrorist-Fraud Probability





    Terrorist-Fraud by Hancke 


        • Choose a noise-vector of Hamming weight n -  Ƭ             
        • Provide a slightly modified table ci-> F(ci, ai, xi:
        • if e= 1, then F(ci, ai, xiis flipped
        • else, do not change the output of F
        • Response challenge
        • Reconstruct x + e 
     
    • In SKI, the adversary can get to learn L(x) + e

     

    My Opinions



        • Hard implementation of protocols with q > 2


        • A powerful SKI version is not analysed


        • Insufficient visualization 

    References  

      • Bourenau, Mitrokosta, Vaudenay (2013). Secure & Lightweight Distance Bounding
      • Bourenau, Mitrokosta, Vaudenay (2013). Towards Secure Distance Bounding
      • Vaudenay (2012). On the Need for Provably Secure Distance Bounding
      • Avoine, Bingöl, Kardas, Lauradoux, Martin (2011). A Framework for Analyzing RFID Distance Bounding Protocols
      • Avione, Lauradoux, Martin (2011). How Secret-sharing can Defeat Terrorist Fraud 
      • Lauradoux (2011). Distance Bounding Protocols and Terrorist Fraud

    Thank You





    Any Questions?

    The SKI Protocol

    By Han Tuzun

    The SKI Protocol

    • 1,560