RATE Analytics

26 juni

Dennis Collaris

            PhD Visualization

Fraud detection explanations
sick-leave insurances

PREVIOUS WORK

My solution

PREVIOUS WORK

Decision support

Diagnostics

Refinement

Justification

Applications

PREVIOUS WORK

Paper presented at:
Workshop on Human Interpretability in Machine Learning

Stockholm, Sweden

PREVIOUS WORK

DEBTOR MANAGEMENT

Effectiveness of debt collection strategies

Decision support

Diagnostics

DEBTOR MANAGEMENT

Design decisions

DEBTOR MANAGEMENT

Design decisions

Global

Local

DEBTOR MANAGEMENT

Design decisions

Surrogate learning

0              1               2             3             x

y

2

1

 

Feature 1

Feature 2

Feature 3

Feature 1

Feature 2

Feature 3

Feature 1

Feature 2

Feature 3

DEBTOR MANAGEMENT

Help data scientists to create and tune explanatory surrogate models.

DEBTOR MANAGEMENT

Configuration view

  • ← Any tabular data set

  • Any Python classifier, or PMML

  • ← Different surrogate models

DEBTOR MANAGEMENT

Global overview

  • Every line  = an explanation

  • More information than traditional feature importance

  • Selecting subgroups

DEBTOR MANAGEMENT

Local explanation view

← quality 

← explanation

DEBTOR MANAGEMENT

Context view

DEBTOR MANAGEMENT

Context view

DEBTOR MANAGEMENT

Context view

Demo

Paper submitted to:
IEEE Visual Analytics Systems and Technology

Vancouver, Canada

Applicable to any machine learning model

LIME

OTHER ACTIVITIES

LIME

0              1               2             3             x

y

2

1

 

-2          -1           0          1          2       d

OTHER ACTIVITIES

0              1               2             3             x

y

2

1

 

0              1               2             3             x

y

2

1

 

LEMON

LIME

LEMON

OTHER ACTIVITIES

LIME / LEMON

Can be used for any Python model...

sklearn-pmml-model

OTHER ACTIVITIES

Can be used for any model...

Events

OTHER ACTIVITIES

NEXT STEPS

Opportunities

  • Achmea

    • Overlijdens Risico Verzekeringen (ORV) (Senna van Iersel)

    • Health insurance churn prediction (Lizan Kops)

    • Pricing GLMs (Joost van Bruggen)

    • Recruitment analytics (Silke Lhoëst)

    • Team Data Science (Schade Particulier) (Wouter Slot)

  • Collaboration

    • RATE colleagues

    • Lorentz Grant Workshop @ Leiden

    • IBM & Hardvard @ Boston

NEXT STEPS

Topic

Global

Local

NWO RATE meeting 26 june

By iamdecode

NWO RATE meeting 26 june

  • 36