Visualization for Explainable AI

May 6th

Dennis Collaris

              PhD Visualization

75% risk!

Black box 

model

Domain expert

But why?

Data

Machine learning

DECISION SUPPORT

Trending issue

Husky vs. Wolf problem

DIAGNOSTICS

CycleGAN

DIAGNOSTICS

75% risk!

Black box 

model

Domain expert

Explanation

Aha!

But why?

Data

Explainer

Machine learning

Global

Instance-level

Fraud Dashboard

Overview

ExplainExplore

Global

Instance-level

Fraud Dashboard

Overview

ExplainExplore

Contribution-Value Plots

Global

Instance-level

Fraud Dashboard

Overview

ExplainExplore

CV Plots

Global

Instance-level

Fraud Dashboard

StrategyAtlas

Overview

Fraud detection explanations
sick-leave insurances

FRAUD DETECTION EXPLANATIONS

Data

 

 

 

 

 

 

 

 

  • Missing/incorrect values

Model

  • 100 Random Forest
  • 500 trees each
  • ~25 decisions per tree
  • 1.312.471 decisions total!

×

OOB error: 27.7%

Real world scenario

FRAUD DETECTION EXPLANATIONS

My solution

FRAUD DETECTION EXPLANATIONS

[1] Palczewska, Anna et. al. Interpreting random forest classification models using a feature contribution method. In Integration of reusable systems, pp. 193–218. Springer, 2014.

0              1               2              3             x

y

2

1

 

7 : 7

6  : 2

...

\(Y_{mean}\) = 0.5

\(Y_{mean}\) = 0.75

\(LI_{X}\) = 0.25

Contribution per Decision Tree:

\(FC_{i,t}^f = \sum_{N \in R_{i,t}} LI_f^N\)

Contribution per Random Forest: 

\(FC_i^f = \frac{1}{T}\sum_{t=1}^T FC_{i,t}^f\)

X < 2.5

Feature contribution

FRAUD DETECTION EXPLANATIONS

[2] Friedman, Jerome H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5): pp. 1189–1232, 2001. 

300

250

200

150

100

50

1

0%

100%

200

100

0

Duration illness

Fraud?

Fraud (55%)

Non-fraud (35%)

Company ABC Inc
Employees 5
Duration illness         days
... ...

Fraud (65%)

Fraud (90%)

Non-fraud (45%)

Non-fraud (40%)

Non-fraud (25%)

Partial dependence

FRAUD DETECTION EXPLANATIONS

[3] Ribeiro, Marco Tulio et. al. Why should i trust you?: Explaining the predictions of any classifier. In

Proceedings of the 22nd ACM SIGKDD, pp. 1135–1144. ACM, 2016.

[4] Deng, Houtao. Interpreting tree ensembles with inTrees. arXiv preprint arXiv:1408.5456 , pp. 1–18, 2014.

0              1               2              3             x

y

2

1

 

Local rule extraction

FRAUD DETECTION EXPLANATIONS

Any project using a Random Forest in R!

 

  • Given a workshop for data science teams
  • Code for dashboard available at team Leon

Applications

FRAUD DETECTION EXPLANATIONS

Fraud team happy! 🎉

FRAUD DETECTION EXPLANATIONS

Paper presented at:
Workshop on Human Interpretability in Machine Learning

Stockholm, Sweden

FRAUD DETECTION EXPLANATIONS

Applicable to any machine learning model

EXPLAINER TECHNIQUES

LIME

0              1               2             3             x

y

2

1

 

0              1               2             3             x

y

2

1

 

LIME

LEMON

EXPLAINER TECHNIQUES

LEMON

Can be used for any Python model...

sklearn-pmml-model

Can be used for any model...

EXPLAINER TECHNIQUES

Applications

Effectiveness of debt
collection strategies

DEBTOR MANAGEMENT

Surrogate learning

0              1               2             3             x

y

2

1

 

Feature 1

Feature 2

Feature 3

Feature 1

Feature 2

Feature 3

Feature 1

Feature 2

Feature 3

DEBTOR MANAGEMENT

Problem

Help data scientists to create and tune explanatory surrogate models.

DEBTOR MANAGEMENT

  • ← Any tabular data set

  • Any Python classifier, or PMML

  • ← Different surrogate models

DEBTOR MANAGEMENT

Configuration view

  • ← Surrogate fidelity: R2
  • ← Prediction
  • ← Feature contribution

Local columns

Global columns

  • Shows values  or contribution →
  • Line color = predicted class →
  • Compare selected instance with data →
  • Clusters indicate ‘strategies’ →

DEBTOR MANAGEMENT

Feature view

DEBTOR MANAGEMENT

Context view

DEBTOR MANAGEMENT

Context view

DEBTOR MANAGEMENT

Context view

Paper accepted at:
IEEE Pacific Visualization 2020

@

Tianjin, China

 

😢

Anywhere where tabular data is used.

Any model in Python or PMML.

 

  • Debtor management (Team Randy Soet)
  • Team Data Science / Wheel of Knowledge
  • More soon!

DEBTOR MANAGEMENT

Applications

Machine Learning Interpretability through Contribution-Value Plots

CONTRIBUTION-VALUE PLOTS

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

x

ŷ

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

[1]    Friedman, J. H. "Greedy function approximation: a gradient boosting machine.", 2001.

Prediction (ŷ)

Local PDP [1]

Sensitivity

analysis

x

ŷ

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

Sensitivity

analysis

x

ŷ

[2]   Goldstein, A., et al. "Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation.", 2015.

Local PDP [1]

ICE plot [2]

Repeat

x

ŷ

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

[4]   Lundberg, S. M., et. al.. "A unified approach to interpreting model predictions.". 2017.

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

[3]   Ribeiro, M. T., et. al. ""Why should i trust you?" Explaining the predictions of any classifier.", 2016.

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

Sensitivity

analysis

x

ŷ

Local PDP [1]

ICE plot [2]

Repeat

β

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

Local PDP

ICE plot

Contribution (β)

Sensitivity

analysis

Repeat

x

ŷ

β

x

β

CONTRIBUTION-VALUE PLOTS

How?

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

Local PDP

ICE plot

Contribution (β)

LCV plot

Sensitivity

analysis

Sensitivity

analysis

Repeat

x

ŷ

β

x

β

CONTRIBUTION-VALUE PLOTS

How?

How?

Pre-existing techniques as elementary building blocks.

Prediction (ŷ)

Local PDP

ICE plot

Contribution (β)

LCV plot

GCV plot

Sensitivity

analysis

Sensitivity

analysis

Repeat

Repeat

x

ŷ

β

x

β

CONTRIBUTION-VALUE PLOTS

VISxAI AnalyzeData

By iamdecode

VISxAI AnalyzeData

  • 34