Introduction to Chaos Game Representation (CGR)
Problem at Hand
Genomic Sequence
Example
ACGAGTTACGGT
ACGCGTAGACGT
GTCATGCATAACT
ACGAGTTACGGT
ACGCGTAGACGT
GTCATGCATAACT
How to compare?🤔🤔
ACGAGTTACGGT
ACGCGTAGACGT
GTCATGCATAACT
How to compare?🤔🤔
That is, how do we bring about a proper numerical representation?
Any Ideas?
Iterated Function Systems (IFS)
Iterated Function Systems (IFS)
What isÂ
A\cdot x
Iterated Function Systems (IFS)
What isÂ
y = A\cdot x
Iterated Function Systems (IFS)
What isÂ
y = A\cdot x
Think of "A" as a "Transformation" on x
Iterated Function Systems (IFS)
y = A\cdot x
Think of "A" as a "Transformation" on x
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\begin{bmatrix}
0.5 & 3 \\
0.5 & 4
\end{bmatrix}
A
Iterated Function Systems (IFS)
y = A\cdot x
Think of "A" as a "Transformation" on x
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\begin{bmatrix}
0.5 & 3 \\
0.5 & 4
\end{bmatrix}
A
\begin{bmatrix}
0.5 \\ 0.5
\end{bmatrix}
Iterated Function Systems (IFS)
y = A\cdot x
Think of "A" as a "Transformation" on x
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
A
\begin{bmatrix}
0 \\ 1
\end{bmatrix}
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
Iterated Function Systems (IFS)
y = A\cdot x
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
A
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\begin{bmatrix}
cos(\theta) & -sin(\theta) \\
sin(\theta) & cos(\theta)
\end{bmatrix}
\theta=\frac{\pi}{2}
"Rotation Matrix"
Iterated Function Systems (IFS)
y = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot x + \begin{bmatrix} e \\ f \end{bmatrix}
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
A
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\begin{bmatrix}
cos(\theta) & -sin(\theta) \\
sin(\theta) & cos(\theta)
\end{bmatrix}
\theta=\frac{\pi}{2}
"Rotation Matrix"
To Define such a generic linear transform, We will need 6 parameters: a,b,c,d,e,f
Iterated Function Systems (IFS)
Iterated Function Systems (IFS)
Now, We shall consider a "Set of Such Transforms"
a | b | c | d | e | f | |
---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | ||||
2 | 0.5 | 0.5 | 0.5 | |||
3 | 0.5 | 0.5 | 0.5 | 0.5 |
Iterated Function Systems (IFS)
Do This Repetedly
Other Transformations
Chaos Game Representation
Chaos Game Representation
Chaos Game Representation
Chaos Game Representation
Chaos Game Representation
Chaos Game Representation
Chaos Game Representation
CC | AC | CA | AA |
---|---|---|---|
GC | TC | GA | TA |
CG | AG | CT | AT |
GG | TG | GT | TT |
C
A
T
G
Introduction to Chaos Game Representation
By Incredeble us
Introduction to Chaos Game Representation
- 49