He Wang PRO
Knowledge increases by sharing but not by saving.
引力波数据分析系列报告
时间:2023年6月11日(周日)下午14:00
中国科学院力学研究所怀柔园区1号楼430会议室
王赫
hewang@ucas.ac.cn
中国科学院大学 · 国际理论物理中心(亚太地区)
——参数估计和数据降噪
In 1916, Einstein proposed the GR and predicted the existence of GW.
Gravitational waves (GW) are a strong field effect in the GR.
2015: the first experimental detection of GW from the merger of two black holes was achieved.
2017: the first multi-messenger detection of a BHS merger was achieved, marking the beginning of multi-messenger astronomy.
2017: the Nobel Prize in Physics was awarded for the detection of GW.
As of now: more than 90 gravitational wave events have been discovered.
双星并合系统产生的引力波波源
引力波振幅的测量
地面引力波探测器网络
2017 年诺贝尔物理学奖
GWTC-3
The First GW Event: GW150914
—— Bernard F. Schutz
DOI:10.1063/1.1629411
GW Data characteristics:
Noise: non-Gaussian and non-stationary
Signal: A low signal-to-noise ratio (SNR) which is typically about 1/100 of the noise amplitude (-60 dB)
Data quality improvement
Credit: Marco Cavaglià
LIGO-Virgo data processing
GW waveform modeling
GW searches
Astrophsical interpretation of GW sources
Thrane, Eric, and Colm Talbot. “An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: Parameter Estimation, Model Selection, and Hierarchical Models.” Publications of the Astronomical Society of Australia 36 (September 2019): e010. https://doi.org/10.1017/pasa.2019.2.
Likelihood
Traditional parameter estimation (PE) techniques rely on Bayesian analysis methods (posteriors + evidence)
For CBC, LIGO-Virgo parameter estimation software:
Bilby / LALInference / PyCBC Inference / RIFT
An example: Posterior probability distribution of the complete 15-dimensional parameters
Wang H, Cao Z, et al. Big Data Mining and Analytics, 2021
GW Data characteristics:
Noise: non-Gaussian and non-stationary
Signal: A low signal-to-noise ratio (SNR) which is typically about 1/100 of the noise amplitude (-60 dB)
Data quality improvement
Credit: Marco Cavaglià
LIGO-Virgo data processing
GW waveform modeling
GW searches
Astrophsical interpretation of GW sources
PRL, 2018, 120(14): 141103.
Matched filtering techniques (匹配滤波方法)
In Gaussian and stationary noise environments, the optimal linear algorithm for extracting weak signals
... under Gaussian stationary noise.
PRD, 2018, 97(4): 044039.
GW Data characteristics:
Noise: non-Gaussian and non-stationary
Signal: A low signal-to-noise ratio (SNR) which is typically about 1/100 of the noise amplitude (-60 dB)
Convolutional Neural Network (ConvNet or CNN)
Matched-filtering Convolutional Neural Network (MFCNN)
GW150914
GW151012
MFCNN
MFCNN
GPS time
GW150914
GW151012
GPS time
Wang H, et al. PRD (2020)
GW170817
GW190412
GW190814
mass distribution
Ruan WH, Wang H, et al. PLB (2023)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
Frequency domain
(whitening)
Time domain
(normalizing)
(matched-filtering)
where \(S_n(|f|)\) is the one-sided average PSD of \(d(t)\)
In the 1-D convolution (\(*\)), given input data with shape [batch size, channel, length] :
(A schematic illustration for a unit of convolution layer)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
An example of transfer function:
CNN
RNN
H1
L1
search scope
(MFCNN group) Wang H, et al. PRD (2023)
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
BEFORE
AFTER
BEFORE
AFTER
Bacon P. et al. arXiv: 2205.13513
Bacon P. et al. arXiv: 2205.13513
Murali C & Lumley D. arXiv: 2210.01718
Wei W and Huerta E A. PLB 2020
Chatterjee C, Wen L, et al. PRD 2021
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
GW170823
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
WaveFormer
Transformer: 750x / 2yrs
Recent Updates to Rapid PE
Neural Posterior Estimation with guaranteed exact coverage: the ringdown of GW150914
Normalizing Flows as an Avenue to Studying Overlapping Gravitational Wave Signals
2002.07656: 5D toy model [1] (PRD)
2008.03312: 15D binary black hole inference [1] (MLST)
2106.12594: Amortized inference and group-equivariant neural PE [2] (PRL)
2111.13139: Group-equivariant neural PE [2]
2210.05686: Importance sampling [2]
2211.08801: Noise forecasting [2]
https://github.com/dingo-gw/dingo (2023.03)
PRD 99, 124044 (2019)
Combining inferences from multiple sources
for _ in range(num_of_audiences):
print('Thank you for your attention! 🙏')
Recent Updates to Rapid PE
Neural Posterior Estimation with guaranteed exact coverage: the ringdown of GW150914
Normalizing Flows as an Avenue to Studying Overlapping Gravitational Wave Signals
2002.07656: 5D toy model [1] (PRD)
2008.03312: 15D binary black hole inference [1] (MLST)
2106.12594: Amortized inference and group-equivariant neural PE [2] (PRL)
2111.13139: Group-equivariant neural PE [2]
2210.05686: Importance sampling [2]
2211.08801: Noise forecasting [2]
https://github.com/dingo-gw/dingo (2023.03)
©Floor Broekgaarden (repo)
LIGO-G2300554
2016年,AlphaGo 第一版发表在了 Nature 杂志上
2021年,AI预测蛋白质结构登上 Science、Nature 年度技术突破,潜力无穷
2022年,DeepMind团队通过游戏训练AI发现矩阵乘法算法问题
《达摩院2022十大科技趋势》将 AI for Science 列为重要趋势
“人工智能成为科学家的新生产工具,催生科研新范式”
AI for Science:为科学带来了模型与数据双驱动的新的研究范式
AI + 数学、AI + 化学、AI + 医药、AI + 物理、AI + 天文 ...
AlphaGo 围棋机器人
AlphaTensor 发现矩阵算法
AlphaFold 蛋白质结构预测
数据质量的提升是一个非常复杂的问题,超过 20 万个传感器通道的数据会决定引力波科学数据通道的质量
降低引力波数据中非高斯的短时脉冲波干扰 (Glitch),会有助于减少引力波信号误报率
引力波探测数据中去除 Glitch,是一个多分类问题
Extremely Loud Helix Koi Fish
Glitch cases
non-Gaussianess
Ormiston R, et al. PRR, 2020
AI For Science 创客松
——人工智能驱动的科学研究
Future of AI in
Gravitational wave astronomy
海量非高斯非稳态
亚原子核级别
超低信噪比
多模态
高维数据结构
引力波观测数据
模式识别
智能降噪
引力波信号识别
智能贝叶斯
参数估计
引力波统计推断
引力理论
量子场论
基本理论检验与颠覆
Bayes
AI
from 李宏毅
Bayes
AI
from 李宏毅
How AI can assist human experts in analyzing and interpreting gravitational wave data (natural science).
By He Wang
引力波数据分析系列报告 | 时间:2023年6月11日(周日)下午14:00 | 中国科学院力学研究所怀柔园区1号楼430会议室