He Wang PRO
Knowledge increases by sharing but not by saving.
2024.10.28 @武汉大学
2024年粒子天体物理重点实验室系列学术报告|8月19日上午10:00 @高能所
August 2 at 3pm NZ time, @University of Auckland
@LanZhou University (邀请报告)
The fifth Gravitational Wave Astrophysics Conference (GWAC 2024)
For 机器学习优化算法与引力波探测研讨会(北京农学院)
引力学术 · 教学 · 科普 研讨会 (2024.05.24-2024.05.27 中国杭州)
2024 年重庆引力与天体物理学术研讨会
For 东北大学
中国物理学会引力与相对论天体物理分会“2024年学术年会”暨第六届伽利略-徐光启国际会议
第二届天文大数据与人工智能研讨会(2024)
第一届音频波段引力波天文学前沿学术研讨会(2024) - 邀请报告
第五届全球京师青年学者论坛-天文学科分论坛
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
引力波数据探索:编程与分析实战训练营。课程网址:https://github.com/iphysresearch/GWData-Bootcamp
Nov. 7, 2023, 17:05-17:20. International Workshop on Intelligent Computing in Astronomy "Computing Senses Cosmos" (2023) @Zhejiang Lab, Hangzhou, China
2023年“第三届空间科学大会”空间引力波探测和精密测量与引力宇宙 | 浙江·德清 https://cssr.kejie.org.cn/meeting/cssa2023/
2023年“第二届机器学习在天文学中的应用”研讨会 | 湖北·宜昌 https://machinelearning2023.casconf.cn/
2023 中国物理学会秋季学术会议 | 中国·银川
He Wang. (2023). Can you find the GW signals?. Kaggle. https://kaggle.com/competitions/can-you-find-the-gw-signals. (引力波暑期学校 Summer School on Gravitational Waves) [Repo: https://github.com/iphysresearch/2023gwml4tianqin]
He Wang. (2023). Can you find the GW signals?. Kaggle. https://kaggle.com/competitions/can-you-find-the-gw-signals. (引力波暑期学校 Summer School on Gravitational Waves) [Repo: https://github.com/iphysresearch/2023gwml4tianqin]
He Wang. (2023). Can you find the GW signals?. Kaggle. https://kaggle.com/competitions/can-you-find-the-gw-signals. (引力波暑期学校 Summer School on Gravitational Waves) [Repo: https://github.com/iphysresearch/2023gwml4tianqin]
The detection of gravitational waves has revolutionized our understanding of the universe and has opened new doors to the cosmos. However, the data generated by these detections are often noisy and difficult to analyze. In recent years, the application of AI technology, particularly deep learning, has shown great potential in the field of gravitational wave detection and analysis. In this talk, we will explore the use of AI in gravitational wave detection and discuss how it has enabled us to unveil new mysteries of the universe. We will highlight the challenges and opportunities of this interdisciplinary field and discuss the role of AI in advancing our understanding of the cosmos. The talk will cover topics such as the application of AI in signal processing, gravitational wave denoising, and machine learning for gravitational wave data analysis. We will also discuss future directions and the potential impact of AI on cosmology and astrophysics research.
引力波数据分析系列报告 | 时间:2023年6月11日(周日)下午14:00 | 中国科学院力学研究所怀柔园区1号楼430会议室
北京·朝阳·大望路·郎园 Vintage OurTimesHere 复合型共享空间(果壳;首创郎园 AIGC 创业产业基地)。 6 月 3 日 13:30-18:30 入场时间:13:00。
中国物理学会引力与相对论天体物理分会“2023年学术年会” 2023.04.23 11:10-11:30 | 中国·重庆
天文信息学与虚拟天文台2022年学术年会,2022 年 4 月 20 日 15:45-16:00 | 会场LED屏显示比例为16:9
国家天文科学数据中心 · 青年数据科学家项目交流会议
东北大学引力波宇宙学与射电天文学研究中心青年学者研讨会 - 特邀报告 (2022.12.21)
Taiji Seminar (2022.10.31) Poster: https://ictp-ap.org/event/60
ML session of a semester at TsingHua Univ. 2022.07.04
中国物理学会引力与相对论天体物理分会 · 2022 年学术年会 (Domestic Session)
The 2022 ITP Postdoctoral Symposium
The 8th KAGRA International Workshop , 14:30-14:45 KST on July 9th, 2021
中国物理学会引力与相对论天体物理分会 , 14:40-15:00 on April 24th, 2021
We reproduced a same state-of-the-art result (Green et al. 2008.03312) for GW150914 and applied the formulism to the other GW events. Normalized flow model and how we pre-rocessing the data will be explained by pedagogy. (omitted) Some on-going works are also mentioned. I have to explain this in Chinese for clarity...🙏
https://github.com/iphysresearch/PSO_python_demo/
Abtract: 1. An introduction on model selection of Bayesian inference in GW astronomy (Ref: 1809.02293, book:「Pattern Recognition and Machine Learning」);2. What is KS test and how to plot p-p plot (Ref: 1409.7215);3. (optional) Recent progress of normalized flow in GW data analysis (Ref: 2002.07656/2008.03312 et al.).