He Wang PRO
Knowledge increases by sharing but not by saving.
2024年6月5日, 10:10-10:40 | 北京农学院体育馆218
王赫 (He Wang)
hewang@ucas.ac.cn
中国科学院大学 · 国际理论物理中心(亚太地区)
中国科学院大学 · 引力波宇宙太极实验室(北京/杭州)
On behalf of the LIGO-VIRGO-KAGRA collaborations
Taiji
Tianqin
https://twitter.com/chipro/status/1768388213008445837?s=46&t=JmDXWgIucgr_FlsBFTvuRQ
DINGO+SEOBNRv4EHM找了3个ebbh
Evidence for eccentricity in the population of binary black holes observed by LIGO-Virgo-KAGRA
https://dcc.ligo.org/LIGO-G2400750
BEFORE
AFTER
LIGO-G2300554
In 1916, A. Einstein proposed the GR and predicted the existence of GW.
Gravitational waves (GW) are a strong field effect in the GR.
2015: the first experimental detection of GW from the merger of two black holes was achieved.
2017: the first multi-messenger detection of a BNS signal was achieved, marking the beginning of multi-messenger astronomy.
2017: the Nobel Prize in Physics was awarded for the detection of GW.
As of now: more than 90 gravitational wave events have been discovered.
O4, which began on May 24th 2023, is currently in progress.
Gravitational waves generated by binary black holes system
GW detector
LIGO-VIRGO-KAGRA network
2017 Nobel Prize in Physics
引力波探测打开了探索宇宙的新窗口
不同波源,频率跨越 20 个数量级,不同探测器
多信使天文学
GWTC-3
DOI:10.1063/1.1629411
©Floor Broekgaarden (repo)
The first GW event of GW150914
引力波观测数据
噪声: 非高斯 + 非稳态
(地面引力波探测) 信噪比极低,通常约为噪声幅度的1/100(-60分贝)
(空间引力波探测) 在任务观测期间接收到的所有引力波信号的叠加(例如:\(10^4\) 个双星黑洞系统,\(10\sim10^2\) 个超大质量黑洞,以及\(10\sim10^3\) 个极端质量比旋近系统等)。
LIGO-VIRGO-KAGRA
LISA / Taiji project
Matched filtering techniques (匹配滤波方法)
In Gaussian and stationary noise environments, the optimal linear algorithm for extracting weak signals
2016年,AlphaGo 第一版发表在了 Nature 杂志上
2021年,AI预测蛋白质结构登上 Science、Nature 年度技术突破,潜力无穷
2022年,DeepMind团队通过游戏训练AI发现矩阵乘法算法问题
《达摩院2022十大科技趋势》将 AI for Science 列为重要趋势
“人工智能成为科学家的新生产工具,催生科研新范式”
2023年,DeepMind发布AI工具GNoME (Nature),成功预测220万种晶体结构
AI for Science:为科学带来了模型与数据双驱动的新的研究范式
AI + 数学、AI + 化学、AI + 医药、AI + 量子、AI + 物理、AI + 天文 ...
AlphaGo 围棋机器人
AlphaTensor 发现矩阵算法
AlphaFold 蛋白质结构预测
验证数学猜想
Pioneering works utilizing CNN
AI for Science \(\rightarrow\) AI for GW Astronomy
Exported: Oct, 2023 (in preparation)
PRL, 2018, 120(14): 141103.
PRD, 2018, 97(4): 044039.
Matched-filtering Convolutional Neural Network (MFCNN)
MLGWSC-1
The majority of AI algorithms used for testing are highly sensitive to non-Gaussian real noise backgrounds, resulting in high false positive rates.
(MFCNN group) H.W., et al. PRD (2023)
CL.M., W.W., H.W., et al. PRD (2022)
Ensemble learning
Leverages statistical approaches to utilize more information for making informed decisions by combining multiple models.
Real-time GW searches for GW150914
H.W., et al. PRD (2020)
Expanding the dimension of the output
CL.M., W.W., H.W., et al. PRD (2023)
Beyond Speed: Generalization and Discovery in GW Detection
He Wang, et al. MLST. 5, 1 (2024): 015046.
Challenges in Model Interpretability
He Wang, et al. MLST. 5, 1 (2024): 015046.
GW151226
GW151012
LVK. arXiv:1602.03839
Challenges in Model Interpretability
He Wang, et al. MLST. 5, 1 (2024): 015046.
Menéndez-Vázquez A, et al. PRD 2021
Alfaidi & Messerger. arXiv:2402.04589
The negative log-likelihood cost function always strongly penalizes the most active incorrect prediction. And the correctly classified examples will contribute little to the overall training cost."
—— I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. 2016. (book)
noise
noise + signal
GW151226
GW151012
LVK. arXiv:1602.03839
Credit: LIGO Magazine.
Traditional parameter estimation (PE) techniques rely on Bayesian analysis methods (posteriors + evidence)
Bayesian statistics
Data quality improvement
Credit: Marco Cavaglià
LIGO-Virgo data processing
GW searches
Astrophsical interpretation of GW sources
PRL 127, 24 (2021) 241103.
PRL 130, 17 (2023) 171403.
Nature Physics 18, 1 (2022) 112–17
HW, et al. Big Data Mining and Analytics 5, 1 (2021) 53–63.
A diagram of prior sampling between feature space and physical parameter space
(Based on 1912.02762)
【【机器学习】白板推导系列(三十三) ~ 流模型(Flow based Model)】
The main idea of flow-based modeling is to express \(\mathbf{y}\in\mathbb{R}^D\) as a transformation \(T\) of a real vector \(\mathbf{z}\in\mathbb{R}^D\) sampled from \(p_{\mathrm{z}}(\mathbf{z})\):
Note: The invertible and differentiable transformation \(T\) and the base distribution \(p_{\mathrm{z}}(\mathbf{z})\) can have parameters \(\{\boldsymbol{\phi}, \boldsymbol{\psi}\}\) of their own, i.e. \( T_{\phi} \) and \(p_{\mathrm{z},\boldsymbol{\psi}}(\mathbf{z})\).
Change of Variables:
Equivalently,
The Jacobia \(J_{T}(\mathbf{u})\) is the \(D \times D\) matrix of all partial derivatives of \(T\) given by:
base density
target density
(Based on 1912.02762)
base density
target density
Rational Quadratic Neural Spline Flows
(RQ-NSF)
Train
nflow
归一化流模型示意图
Test
nflow
Train
nflow
Simulation-Based Inference (SBI)
PRL 127, 24 (2021) 241103.
PRL 130, 17 (2023) 171403.
Real-time gravitational wave science with neural posterior estimation
Sampling with prior knowledge for high-dimensional gravitational wave data analysis
He Wang, et al. Big Data Min. Anal. (2021)
PRD 108, 4 (2023): 044029.
Neural Posterior Estimation with Guaranteed Exact Coverage: The Ringdown of GW150914
arXiv:2310.13405, LIGO-P2300306
Cosmological Inference using Gravitational Waves and Normalising Flows
Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows
arXiv:2310.12209
He Wang, et al. (2024)
Normalizing Flows as an Avenue to Studying Overlapping Gravitational Wave Signals
PRL 131, 17 (2023): 171403.
Angular Power Spectrum of Gravitational-Wave Transient Sources as a Probe of the Large-Scale Structure
Pipeline | Targets | Programing Language (sampling method) | Comments |
---|---|---|---|
GLASS (Littenberg&Cornish 2023) |
Noise, UCB, VGB, MBHB |
C / Python (TPMCMC / RJMCMC) | noise_mcmc+gb_mcmc+vb_mcmc+global_fit |
Eryn | UCB | Python (TPMCMC / RJMCMC) | Mini code for UCB case |
PyCBC-INFERENCE | MBHB | Python (?) | Unavailable |
Bilby in Space / tBilby | MBHB / ? | ? / Python? (RJMCMC) | Unavailable |
Strub et al. | UCB | ? (GP) | Unavailable / GPU-based |
Zhang et al. (LZU) | UCB | ? (PSO) | MLP |
Balrog | MBHB | ? |
(Sec.8.6 Red Book)
Global Fit
Technical challenges:
Neural density estimation
Disadvantages of MCMC
Ref:
Neural density estimation
nflow
Ref:
Neural density estimation
nflow
for _ in range(num_of_audiences):
print('Thank you for your attention! 🙏')
This slide: https://slides.com/iphysresearch/2024june_bua
AI or Bayes
Text-to-image
"A running dog"
AI or Bayes
Text-to-image
"A corgi running on the street"
A picture is worth a thousand words.
A fraction of a thousand words.
Credit: 李宏毅
"A running dog"
By He Wang
For 机器学习优化算法与引力波探测研讨会(北京农学院)