James B. Wilson

Reciprocal

\(\Delta y=\frac{\Delta y}{\Delta x}\Delta x\)

Integral

\(\int_{\Delta x} y\,dx\)

Derivative

\(\frac{dy}{dx}\)

Area

\(\Delta\)y \(\times\) \(\Delta\) x

Limits v's        L

All but finitely many

v's within e decimal places of L.

Slope

\(\Delta\)y 

\(\Delta\)x 

Fundamental Theorem

of Calculus

\(\Delta y=\int_{\Delta x} \frac{dy}{dx} dx\)

Measure

\(\Delta u=b-a\)

\(a\)

\(b\)

{

\(\Delta u\)

\(\Delta y\times \Delta x\)

\(\Delta x\)

\(\Delta y\)

\(\Delta y/\Delta x\)

\(\Delta x\)

\(\Delta y\)

\(a\)

\(b\)

{

\(\Delta u\)

of the infinite approximations your could make, for any precision, all but finitely many are accurate

{

\(L\)

\[\int_{\Delta x} ydx=\lim \sum_i \Delta y_i \Delta x_i\]

\[\frac{dy}{dx} =\lim \frac{\Delta y_i}{\Delta x_i}\]

\[\Delta x = 5-3\qquad \int_{\Delta x} x^3 dx=?\]

\[\int_3^5 \frac{d}{dx}\left(\frac{x^4}{4}\right) dx=?\]

\[\int_{\Delta x} \frac{d}{dx}\left(\frac{x^4}{4}\right) dx=\Delta y=\frac{5^4}{4}-\frac{3^4}{4}\]

James B. Wilson

Integral

\(\int_{\Delta x} y\,dx\)

Derivative

\(\frac{dy}{dx}\)

Area

\(\Delta\)y \(\times\) \(\Delta\) x

Limits v's        L

All but finitely many

v's within e decimal places of L.

Slope

\(\Delta\)y 

\(\Delta\)x 

Fundamental Theorem

of Calculus

\(y=\frac{d}{dx}\int_c^x ydx\)

Measure

\(\Delta u=b-a\)

Reciprocal

\(\Delta y=\frac{\Delta y\Delta x}{\Delta x}\)

\[\int_{\Delta x} \frac{1}{x}  dx=?\]

\[\frac{d}{dx}(\ln x)=\frac{d}{dx}\int_{\Delta x} \frac{1}{x}dx=\frac{1}{x}\]

\[\ln x+C:=\int_c^x\frac{1}{x} dx\]

The Calculus

By James Wilson

The Calculus

  • 87