Unit testing with Python
Introduction
- Benefits of Unit testing
Python tools
- Python different test tools.
Writing tests for different scenarios
- Simple test case
- data driven/Decorated test (@ddt)
- Generative testing
- Mock
- The Mock object
- Different ways of using
- Patch
Running tests
- Command line interface
Integrating with CI (Travis)
- Github and Travis example
What we will cover today
Unit tests are
- fast
- accurate
- reliable
- simple
- highlight weaknesses (when not easy)
- great value
Python tools available
unittest
the standard library included in Python.
Familiar to anyone who has used any of JUnit/nUnit/CppUnit series of tools
py.test
Also popular and an alternative to Python's standard unittest module.
It boasts a simple syntax
Some
Test
Examples
Simple test case (to get started)
import json
import datetime
class activity_ConvertJATS():
def add_update_date_to_json(self, json_string, update_date):
try:
json_obj = json.loads(json_string)
updated_date = datetime.datetime.strptime(update_date, "%Y-%m-%dT%H:%M:%SZ")
update_date_string = updated_date.strftime('%Y-%m-%dT%H:%M:%SZ')
json_obj['update'] = update_date_string
json_string = json.dumps(json_obj)
except:
if self.logger:
self.logger.error("Unable to set the update date in the json")
return json_string
import unittest
from simple_sample import activity_ConvertJATS
import json
input = open("tests/test_data/input.json","r").read()
output = json.loads(open("tests/test_data/output.json","r").read())
class MyTestCase(unittest.TestCase):
def test_add_update_to_json(self):
self.jats = activity_ConvertJATS()
result = self.jats.add_update_date_to_json(input,'2012-12-13T00:00:00Z')
self.assertDictEqual(json.loads(result), output)
if __name__ == '__main__':
unittest.main()
Data driven/decorated test
class activity_DepositAssets():
def get_no_download_extensions(self, no_download_extensions):
return [x.strip() for x in no_download_extensions.split(',')]
import unittest
from ddt import ddt, data, unpack
from sample import activity_DepositAssets
@ddt
class MyTestCase(unittest.TestCase):
def setUp(self):
self.depositassets = activity_DepositAssets()
@unpack
@data({'input': '.tif', 'expected': ['.tif']},
{'input': '.jpg, .tiff, .png', 'expected':['.jpg', '.tiff', '.png']})
def test_get_no_download_extensions(self, input, expected):
result = self.depositassets.get_no_download_extensions(input)
self.assertListEqual(result, expected)
if __name__ == '__main__':
unittest.main()
sample.py
tests/test_sample_ddt_unpack.py
Generative/Property Based Testing
Improve product quality and find bugs faster by generating tests
Property based testing is a method of testing functions pioneered by the Haskell community. From Hackage:
QuickCheck is a library for random testing of program properties.
The programmer provides a specification of the program, in the form of properties which functions should satisfy, and QuickCheck then tests that the properties hold in a large number of randomly generated cases.
- A developer who writes a function will naturally think of examples that work. Generators are more like (super powerful) QAs. They will find examples that don't work.
- Rather than a handful of examples, generators describe your data explicitly.
- Null values, empty strings, divide by zero are obvious examples often forgotten and generators will show them straight away.
def encode(input_string):
count = 1
prev = ''
lst = []
for character in input_string:
if character != prev:
if prev:
entry = (prev, count)
lst.append(entry)
count = 1
prev = character
else:
count += 1
else:
entry = (character, count)
lst.append(entry)
return lst
def decode(lst):
q = ''
for character, count in lst:
q += character * count
return q
from hypothesis import given
from hypothesis.strategies import text
@given(text())
def test_decode_inverts_encode(s):
assert decode(encode(s)) == s
First try
Falsifying example: test_decode_inverts_encode(s='')
UnboundLocalError: local variable 'character' referenced before assignment
This code is simply wrong when called on an empty string.
Fix
if not input_string:
return []
Mocking
with
Python
What is Mocking?
"Sometimes, you need "other" code resources for your test setup. But those resources may be unavailable, unstable, or just too unwieldy to use. You could try and find a replacement for the missing resource; or you could simulate it by creating what is known as a mock. Mocks let us simulate resources that are either unavailable or too unwieldy for unit testing."
http://www.drdobbs.com/testing/using-mocks-in-python/240168251
Mocking in Python is done by using patch to hijack an API function or object creation call. When patch intercepts a call, it returns a MagicMock object by default. By setting properties on the MagicMock object, you can mock the API call to return any value you want or raise an Exception.
https://blog.fugue.co/2016-02-11-python-mocking-101.html
How do we mock in Python?
@patch('requests.post')
def test_schedule_article_publication(self, mock_requests_post):
mock_requests_post.return_value = FakeResponse(200, {'result': 'success'})
input = '{"articles":{"article-identifier":"03430","scheduled":"1463151540"}}'
resp = self.client.post('/api/schedule_article_publication', data=input)
self.assertDictEqual(json.loads(resp.data), {'result': 'success'})
Most used attributes of a MagicMock instance:
return_value
@data(data_published_lax)
@patch.object(activity_VerifyPublishResponse, 'publication_authority')
@patch.object(activity_VerifyPublishResponse, 'emit_monitor_event')
def test_do_activity(self, data, fake_emit_monitor, fake_publication_authority):
fake_publication_authority.return_value = "elife2.0"
result = self.verifypublishresponse.do_activity(data)
fake_emit_monitor.assert_called_with(settings_mock,
data["article_id"],
data["version"],
data["run"],
self.verifypublishresponse.pretty_name,
"end",
"Finished Verification " + data["article_id"])
self.assertEqual(result, self.verifypublishresponse.ACTIVITY_SUCCESS)
assert_called_with
Running unit tests
Examples:
python -m unittest test_module - run tests from test_module
python -m unittest module.TestClass - run tests from module.TestClass
python -m unittest module.Class.test_method - run specified test method
The unittest module can be used from the command line to run tests from modules, classes or even individual test methods:
Integrating with CI
Any questions?
Unit testing with Python
By Jennifer Strejevitch
Unit testing with Python
- 1,081