Day 30:

PCA and the Pseudoinverse

Theorem. Given an \(m\times n\) matrix \(A\) with singular value decomposition 

\[A = \sum_{i=1}^{p}\sigma_{i}u_{i}v_{i}^{\top},\] where \(p=\min\{m,n\},\) fix \(k\leq p\) and define \[A_{k}: = \sum_{i=1}^{k}\sigma_{i}u_{i}v_{i}^{\top}.\] For every \(m\times n\) matrix \(B\) with rank at most \(k\) we have \[\|A-B\|_{F}\geq \|A-A_{k}\|_{F}.\]

Theorem. If \(w_{1},\ldots,w_{n}\) are the columns of \(A\), then \[\|A\|_{F} = \sqrt{\sum_{j=1}^{n}\|w_{j}\|^{2}}\]

Suppose \(A\in\mathbb{R}^{m\times n}\) has singular value decomposition \[A = \sum_{i=1}^{p}\sigma_{i}u_{i}v_{i}^{\top},\] where \(p=\min\{m,n\}.\) In matrix form:

\[A = \left[\begin{array}{cccc} \vert & \vert & & \vert\\ u_{1} & u_{2} & \cdots & u_{m}\\ \vert & \vert & & \vert\end{array}\right] \left[\begin{array}{cccccc} \sigma_{1} & 0 & \cdots & 0 & 0 & \cdots\\ 0 & \sigma_{2} & & 0 & 0 & \cdots\\ \vdots & & \ddots & \vdots & \vdots & \\ 0 & 0 & \cdots & \sigma_{m} & 0 & \cdots\end{array}\right]\left[\begin{array}{ccc} - & v_{1}^{\top} & -\\  - & v_{2}^{\top} & -\\ & \vdots & \\ - & v_{n}^{\top} & -\\ \end{array}\right]\]

 

\[A = \left[\begin{array}{cccc} \vert & \vert & & \vert\\ u_{1} & u_{2} & \cdots & u_{m}\\ \vert & \vert & & \vert\end{array}\right] \left[\begin{array}{cccc} \sigma_{1} & 0 & \cdots & 0\\ 0 & \sigma_{2} & & 0\\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{m}\\ 0 & 0 & \cdots & 0\\ \vdots & \vdots &  & \vdots\end{array}\right]\left[\begin{array}{ccc} - & v_{1}^{\top} & -\\  - & v_{2}^{\top} & -\\ & \vdots & \\ - & v_{n}^{\top} & -\\ \end{array}\right]\]

If \(m<n\)

If \(n<m\)

If \(k\leq p\) and \[A_{k} = \sum_{i=1}^{k}\sigma_{i}u_{i}v_{i}^{\top},\]  In matrix form:

\[A = \left[\begin{array}{cccc} \vert & \vert & & \vert\\ u_{1} & u_{2} & \cdots & u_{m}\\ \vert & \vert & & \vert\end{array}\right] \left[\begin{array}{cccccc} \sigma_{1} & 0 & \cdots & 0 & 0 & \cdots\\ 0 & \sigma_{2} & & 0 & 0 & \cdots\\ \vdots & & \ddots & \vdots & \vdots & \\ 0 & 0 & \cdots & \sigma_{k} & 0 & \cdots\\ 0 & 0 & \cdots & 0 & 0 & \\ \vdots & \vdots & & \vdots &  & \ddots\end{array}\right]\left[\begin{array}{ccc} - & v_{1}^{\top} & -\\  - & v_{2}^{\top} & -\\ & \vdots & \\ - & v_{n}^{\top} & -\\ \end{array}\right]\]

Corollary. Given an \(m\times n\) matrix \(A\) with singular value decomposition 

\[A = \sum_{i=1}^{p}\sigma_{i}u_{i}v_{i}^{\top},\] where \(p=\min\{m,n\},\) fix \(k\leq p\) and define \[A_{k}: = \sum_{i=1}^{k}\sigma_{i}u_{i}v_{i}^{\top}.\] 

Let \(a_{1},\ldots,a_{n}\) be the columns of \(A\), let \(a_{1}^{(k)},\ldots,a_{n}^{(k)}\) be the columns of \(A_{k}\). If \(b_{1},\ldots,b_{n}\) are all vectors in some \(k\) dimensional subspace of \(\R^{m}\), then \[\sum_{i=1}^{n}\|a_{i} - a_{i}^{(k)}\|^{2}\leq \sum_{i=1}^{n}\|a_{i} - b_{i}\|^{2}\]

\[A^{\top} = \begin{bmatrix}    1.6356  &   1.2432\\    3.5324  &   0.9194\\    5.1171  &   2.1886\\    1.7070  &  -0.2575\\    2.1051  &   2.0781\\    3.4407  &   2.3865\\    2.5796  &   2.2113\\    2.0085  &   0.3319\\    3.1858  &   1.6924\\    3.2266  &   1.9745\\    2.3962  &   1.7579\\    5.1645  &   2.7584\\    2.5640  &   1.3116\\    3.9581  &   2.4168\\    1.6782  &   1.7841\\    1.7983  &   0.5214\\    0.5665  &   0.5206\\    3.3292  &   2.1693\\    1.9416  &   1.1841\\    1.3375  &   1.4968\\\end{bmatrix}\]

\[A_{1}^{\top} = \begin{bmatrix}    1.7676  &  1.0128\\    3.0559  &  1.7509\\    4.7964  &  2.7482\\    1.1741  &  0.6727\\    2.4813  &  1.4217\\    3.6197  &  2.0740\\    2.8960  &  1.6593\\    1.6552  &  0.9484\\    3.1284  &  1.7925\\    3.2808  &  1.8798\\    2.5622  &  1.4681\\    5.0780  &  2.9095\\    2.4961  &  1.4301\\    4.0224  &  2.3047\\    2.0330  &  1.1649\\    1.5787  &  0.9046\\    0.6510  &  0.3730\\    3.4421  &  1.9722\\    1.9725  &  1.1301\\    1.6525  &  0.9468 \end{bmatrix}\]

Example.

\(\|A-A_{k}\|_{F} =2.3577... \)

\[A^{\top} = \begin{bmatrix}     1.0684  &  2.8744\\    0.8506  &  3.1363\\    2.2565  &  1.6282\\    2.1041  &  1.4684\\    2.9667  &  0.8386\\    1.4346  &  3.0533\\    1.6221  &  2.5084\\    1.7665  &  1.9735\\    0.5197  &  3.3750\\    1.0541  &  2.7291\\    0.8986  &  3.3379\\    1.9947  &  2.0902\\    3.2943  &  1.1735\\    2.2895  &  1.4871\\    1.9775  &  1.9606\\    2.8699  &  1.1791\\    2.3043  &  1.9548\\    2.5457  &  1.9132\\    1.7523  &  1.8961\\    1.9964  &  2.1832 \end{bmatrix}\]

Example.

\[A^{\top} = \begin{bmatrix}     1.0684  &  2.8744\\    0.8506  &  3.1363\\    2.2565  &  1.6282\\    2.1041  &  1.4684\\    2.9667  &  0.8386\\    1.4346  &  3.0533\\    1.6221  &  2.5084\\    1.7665  &  1.9735\\    0.5197  &  3.3750\\    1.0541  &  2.7291\\    0.8986  &  3.3379\\    1.9947  &  2.0902\\    3.2943  &  1.1735\\    2.2895  &  1.4871\\    1.9775  &  1.9606\\    2.8699  &  1.1791\\    2.3043  &  1.9548\\    2.5457  &  1.9132\\    1.7523  &  1.8961\\    1.9964  &  2.1832 \end{bmatrix}\]

Example.

How do we do this?

Principal Component Analysis

Definition. A subset \(X\subset \R^{n}\) is called an affine subspace if there is a subspace \(V\subset \R^{n}\) and a vector \(w\in\R^{n}\) so that

\[X = \{w+v: v\in V\}\]

Let \(x_{1},\ldots,x_{n}\) be a collection of vectors in \(\R^{m}.\) Form the matrix 

\[A = \begin{bmatrix} | & | & | & & |\\ x_{1} & x_{2} & x_{3} & \cdots & x_{n}\\  | & | & | & & |\end{bmatrix}\]

Define the vector

\[\overline{x} = \frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)\]

Form the matrix

\[\tilde{A} = \begin{bmatrix} | & | & | & & |\\ (x_{1}-\overline{x}) & (x_{2}-\overline{x}) & (x_{3}-\overline{x}) & \cdots & (x_{n}-\overline{x})\\  | & | & | & & |\end{bmatrix}\]

Principal Component Analysis

Form the matrix 

\[\tilde{A}_{k} = \begin{bmatrix} | & | & | & & |\\ y_{1} & y_{2} & y_{3} & \cdots & y_{n}\\  | & | & | & & |\end{bmatrix}\]

The vectors \(y_{1},\ldots,y_{n}\) are in a \(k\)-dimensional subspace \(V\), and

\[\sum_{i=1}^{n}\|(x_{i}-\overline{x})-y_{i}\|^{2}\]

is smallest among all collections of vectors \(y_{1},\ldots,y_{n}\) that live in a \(k\)-dimensional subspace. Note that

\[\sum_{i=1}^{n}\|(x_{i}-\overline{x})-y_{i}\|^{2} = \sum_{i=1}^{n}\|x_{i}-(\overline{x}+y_{i})\|^{2} \]

and the vectors \(\overline{x}+y_{1},\ldots,\overline{x}+y_{n}\) all live in the affine subspace

\[X = \{\overline{x}+v : v\in V\}.\]

Example.

Example.

Example.

Definition. Given an \(m\times n\) matrix \(A\) with singular value decomposition \[A=U\Sigma V^{\top},\] that is, \(U\) and \(V\) are orthogonal matrices, and \(\Sigma\) is an \(m\times n\) diagonal matrix with nonnegative entries \(\sigma_{1}\geq \sigma_{2}\geq \cdots\geq \sigma_{p}\) on the diagonal, we define the pseudoinverse of \(A\) \[A^{+} = V\Sigma^{+}U^{\top}\] where \(\Sigma^{+}\) is the \(n\times m\) diagonal matrix with \(i\)th diagonal entry \(1/\sigma_{i}\) if \(\sigma_{i}\neq 0\) and \(0\) if \(\sigma_{i}=0\).

Example. Consider \[A = \begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix}, \quad\text{then}\quad A^{+} = \begin{bmatrix} 1/2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.\]

Example. Consider \[A = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix}.\]

Then the singular value decomposition of \(A\) is

\[= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}.\]

\[A= \begin{bmatrix} 0  & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix}\begin{bmatrix} 0  & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}.\]

Hence, the pseudo inverse of \(A\) is

\[A^{+}= \begin{bmatrix} 0  & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix} 1/2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix} 0  & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{bmatrix}.\]

Example. Consider \[A = \begin{bmatrix} 1 & 1\\ 1 & 1\end{bmatrix}.\]

Then the singular value decomposition of \(A\) is

\[= \begin{bmatrix}1/4 & 1/4\\ 1/4 & 1/4\end{bmatrix}.\]

\[A= \left(\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\right)\begin{bmatrix} 2 & 0 \\ 0 & 0\end{bmatrix}\left(\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\right).\]

Hence, the pseudo inverse of \(A\) is

\[A^{+}= \left(\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\right)\begin{bmatrix} 1/2 & 0 \\ 0 & 0\end{bmatrix}\left(\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\right).\]

Example. Consider \[B = \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix} \sqrt{3} & 0 & 0\\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\[1ex] \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\end{bmatrix}.\]

 

Hence, the pseudo inverse of \(B\) is

\[B^{+}=\begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}  & \frac{1}{\sqrt{3}}\\[1ex] \frac{1}{\sqrt{6}}  & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}}\\[1ex] \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}}\end{bmatrix}\begin{bmatrix} 1/\sqrt{3} & 0\\ 0 & 1\\ 0 & 0\end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{bmatrix}.\]

\[ = \frac{1}{3}\begin{bmatrix} 2 & -1\\ -1 & 2\\ 1 & 1\end{bmatrix}\]

Note: \[BB^{+} = \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} \quad\text{but}\quad B^{+}B = \frac{1}{3}\begin{bmatrix} 2 & -1 & 1\\ -1 & 2 & 1\\ 1 & 1 & 2\end{bmatrix}\]

Let \(A\) be an \(m\times n\) matrix with singular value decomposition

\[A=U\Sigma V^{\top}.\]

Hence

\[A^{+} = V\Sigma^{+}U^{\top}.\]

 

Let \(\operatorname{rank}(A)=r\), then

\[\Sigma = \begin{bmatrix} D & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}\quad\text{and}\quad \Sigma^{+} = \begin{bmatrix} D^{-1} & \mathbf{0}\\ \mathbf{0}\ & \mathbf{0}\end{bmatrix}\]

where 

\[D = \begin{bmatrix}\sigma_{1} & 0 & \cdots & 0\\ 0 & \sigma_{2} & & \vdots\\ \vdots & & \ddots & \vdots\\ 0 &\cdots & \cdots & \sigma_{r} \end{bmatrix}\quad \text{and}\quad D^{-1} = \begin{bmatrix}1/\sigma_{1} & 0 & \cdots & 0\\ 0 & 1/\sigma_{2} & & \vdots\\ \vdots & & \ddots & \vdots\\ 0 &\cdots & \cdots & 1/\sigma_{r} \end{bmatrix}\]

and \(\sigma_{1}\geq \sigma_{2}\geq\ldots\geq \sigma_{r}>0\)

 

Note: These could be empty matrices.

Using this we have

\[AA^{+}=U\Sigma V^{\top}V\Sigma^{+}U^{\top} = U\Sigma\Sigma^{+}U^{\top} = U \begin{bmatrix} D & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}\begin{bmatrix} D^{-1} & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}U^{\top}\]

\[= U \begin{bmatrix} I & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}U^{\top} = U(\,:\,,1\colon\! r)U(\,:\,,1\colon\! r)^{\top}\]

Orthogonal projection onto \(C(A)\).

\[A^{+}A=V\Sigma^{+}U^{\top} U\Sigma V^{\top}= V\Sigma^{+}\Sigma V^{\top} = V \begin{bmatrix} D^{-1} & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}\begin{bmatrix} D & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}V^{\top}\]

\[= V \begin{bmatrix} I & \mathbf{0}\\ \mathbf{0} & \mathbf{0}\end{bmatrix}V^{\top} = V(\,:\,,1\colon\! r)V(\,:\,,1\colon\! r)^{\top}\]

Orthogonal projection onto ???.

If \(A\) has singular value decomposition

\[A=U\Sigma V^{\top},\]

then

\[A^{\top} = (U\Sigma V^{\top})^{\top} = V\Sigma^{\top} U^{\top}.\]

From this we see:

  1. The singular values of \(A\) and \(A^{\top}\) are the same.
  2. The vector \(v\) is a right singular vector of \(A\) if and only if \(v\) is a left singular vector of \(A^{\top}\).
  3. The vector \(u\) is a left singular vector of \(A\) if and only if \(u\) is a right singular vector of \(A^{\top}\).
  4. If \(A\) is rank \(r\), then the first \(r\) columns of \(V\) are an orthonormal basis for \(C(A^{\top})\).

\[A^{+}A = V(\,:\,,1\colon\! r)V(\,:\,,1\colon\! r)^{\top}\]

Orthogonal projection onto \(C(A^{\top})\).

Example. Consider the equation

\[\begin{bmatrix}1 & 1\\ 1 & 2\\ 1 & 3\end{bmatrix}\begin{bmatrix}x_{1}\\ x_{2}\end{bmatrix} = \begin{bmatrix}1\\ 4\\ 9\end{bmatrix}.\]

This is an example of an overdetermined system (more equations than unknowns). Note that this equation has no solution since

\[\text{rref}\left(\begin{bmatrix}1 & 1 & 1\\ 1 & 2 & 4\\ 1 & 3 & 9\end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\]

What if we want to find the vector \(\hat{x} = [x_{1}\ x_{2}]^{\top}\) that is closest to being a solution, that is, \(\hat{x}\) is the vector so that \(\|A\hat{x}-b\|\) is as small as possible. This is called the least squares solution to the above equation.

Now, consider a general matrix equation:

\[Ax=b.\]

  • The closest point in \(C(A)\) to \(b\) is \(AA^{+}b\), since \(AA^{+}\) is the orthogonal projection onto \(C(A)\). 
  • Take \(\hat{x} = A^{+}b\), then we have \[A\hat{x} = AA^{+}b\]
  • So \(\hat{x} = A^{+}b\) is a least squares solution to \(Ax=b\).

Note: If \(Ax=b\) has a solution, that is, \(b\in C(A)\), then \(\hat{x}\) is a solution to \(Ax=b\), since \(AA^{+}b=b\).

Example. Consider \[A= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1\end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}  & \frac{1}{\sqrt{3}}\\[1ex] \frac{1}{\sqrt{6}}  & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}}\\[1ex] \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}}\end{bmatrix}\begin{bmatrix} \sqrt{3} & 0\\ 0 & 1\\ 0 & 0\end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{bmatrix}.\]

 

Then, \[A^{+} = \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1\end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix} 1/\sqrt{3} & 0 & 0\\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\\[1ex] \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\[1ex] \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\end{bmatrix}.\]

 

\[ = \frac{1}{3}\begin{bmatrix} 2 & -1 & 1\\ -1 & 2 & 1\end{bmatrix}\]

If we take \(b=[1\ \ 1\ \ 1]^{\top}\), then the equation \(Ax=b\) has no solution. However, the least squares solution is

\[\hat{x} = A^{+}\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}2/3\\ 2/3\end{bmatrix}.\]

Linear Algebra Day 30

By John Jasper

Linear Algebra Day 30

  • 377