Intro to

Akka Streams & HTTP

Lance Arlaus

ny-scala

blog.lancearlaus.com

Going Reactive

quick take

  • Reactive is Real

    • four tenets
    • expanding options
  • Streams are Effective

    • versatile abstraction

Intro to Akka Streams and HTTP

Overview

  • Reactive Streams Basics
    • concept: push-based streams
    • innovation: demand-based flow
  • Akka Streams Basics
    • capability: reusable flow components
    • abstraction: visual flow construction (DSL)
  • Akka HTTP Basics
    • improvement: fully stream-based
  • Sample Service

What is a stream?

natural abstraction for sequenced data

(file, network, events, ...)

  • has a beginning
  • may be unbounded
  • may be non-repeatable
Example Bounded Repeat
(6, 7, 8, 9) Fixed integer sequence Yes Yes
(3, 4, 5, ...) Infinite integer sequence No Yes
(9, 3, 1, 6) Fixed-length random sequence Yes No
(7, 2, 4, ...) Infinite random sequence No No
(GET, ...) Incoming HTTP requests ? ?

What is the challenge?

mismatched producer and consumer

  • fast producer / slow consumer
    • producer blocks (sync only)
    • consumer drops
  • slow producer / fast consumer
    • consumer blocks e.g. iterator.next()

FAST (10/sec)

slooww (2/sec)

Robust Stream Processing

Reactive Streams

handle large data sets or rapid events with bounded resources

  • data only flows downstream in response to demand
  • all interfaces non-blocking

Akka Streams

reusable, natural expression of stream processing atop Akka

  • data transformations
  • flow graph components

Reactive Streams Basics

  • Publisher

  • Subscriber

  • Subscription

  • Processor

Publisher

  • how does data flow?

    • key concept: streams are push-based

  • data is never directly pulled from a Publisher

    • no next() method
    • subscribe to Publisher, receive events (later) via Subscriber

Reactive Streams Basics

public interface Publisher<T> {
    void subscribe(Subscriber<? super T> s);
}

Subscriber

  • asynchronous data events

    • publisher.subscribe(subscriber)
    • subscriber.onNext(element), ...
    • subscriber.onComplete()
  • events pushed to subscriber

  • what about errors?

    • subscriber.onError(error)

Reactive Streams Basics

public interface Subscriber<T> {
    void onSubscribe(Subscription s);
    void onNext(T t);
    void onError(Throwable t);
    void onComplete();
}

how is this different than traditional event listeners or reactive extensions (Rx.NET, et al)?

Subscription

  • deconstruct Iterator.next()
    • signal demand (call implies demand)
    • deliver data (return value)
    • signal error (exception)
  • data & error via subscriber.on(Next|Error)
  • signal demand
    • subscribe() implies demand? no

Reactive Streams Basics

Subscription

  • when does data flow?

    • key innovation: flow is demand-based
  • explicitly signal demand
    • subscription.request(count)

  • no data events flow until demand is signaled
    • publisher.subscribe(subscriber)

    • subscriber.onSubscribe(subscription)

    • subscription.request(count)

    • subscriber.onNext(element), ...

Reactive Streams Basics

public interface Subscription {
    void request(long n);
    void cancel();
}

Processor

  • both Subscriber and Publisher

    • processing stage (e.g. data transformation)
    • non-terminal

Reactive Streams Basics

public interface Processor<T, R> 
    extends Subscriber<T>, Publisher<R> {
}

Reactive Streams Basics

Flow Visualization

the flow of demand and data

Summary

  • key concept: streams are push-based
  • key innovation: flow is demand-based
  • Reactive Streams footprint
    • Publisher
    • Subscriber
    • Subscription
    • Processor
  • async/non-blocking

Reactive Streams Basics

public interface Publisher<T> {
   void subscribe(Subscriber<? super T> s);
}
public interface Subscriber<T> {
   void onSubscribe(Subscription s);
   void onNext(T t);
   void onError(Throwable t);
   void onComplete();
}
public interface Subscription {
   void request(long n);
   void cancel();
}
public interface Processor<T, R> 
    extends Subscriber<T>, Publisher<R> {
}

Streams: From Reactive to Akka

Reactive Streams

objective: minimal, well-specified integration API

  • multi-vendor integration (part of Java 9?)
  • not a user level API (really a SPI)

Akka Streams

objective: develop streaming applications

  • component definition (source, sink, flow, etc.)
  • transformation library (data, stream)
  • graph construction (fan out/in, DSL)
    • linear, branching, cyclic
  • integration / customization
    • Akka publisher / subscriber
    • custom stages
 
Level1
(Basic)
Level 2
(Intermediate)
Level 3
(Advanced)
Concept
Stream
Graph, Shape, Inlet, Outlet
Materialization
Buffers
Stream of streams
Attributes
Cyclic Graphs
Recovery
Component
Shape Library
Source, Sink, Flow
  • to, toMat, via, viaMat
  • runWith, runForeach, runFold
Broadcast, Zip, ZipWith, Unzip, UnzipWith, Merge
FlexiRoute, FlexiMerge
BidiFlow
Transform
Data Transformation
  • map, mapAsync
  • fold, scan, filter, collect
  • take, drop, take/drop(While|Within)
Custom Transformation
  • transform
Stream Transformation
  • concat, concatMat
  • flatten
  • prefixAndTail, split(After|When)
  • conflate, expand
  • grouped, groupedWithin
Other
  • buffer, log, withAttributes
Custom Materialization
  • mapMaterializedValue
Stream Transformation
  • groupBy
Error Handling
  • recover
Construct
Linear Flows
DSL, Builder
Branching Flows
Cyclic Flows
Protocol Flows
Customize
N/A
  • PushPullStage
  • ActorPublisher
  • ActorSubscriber
  • DetachedStage
  • AsyncStage
Test
 
 
 

Akka Streams Topic Map

Today

Basic Building Blocks

  • Source
  • Sink
  • Flow

Akka Streams Level 1 (Basics)

*conceptually

val source = Source(1 to 3)
val sum    = Flow[Int].fold(0.0)(_ + _)
val sink   = Sink.foreach[Double](println)

// Prints '6.0'
source.via(sum).to(sink).run

the streaming function

Function

Input

Output

Flow

Source

Sink

~>

~>

Publisher*

Processor*

Subscriber*

Inlet

Outlet

Shape: Inlets & Outlets

Akka Streams Level 1 (Basics)

Shape is to Graph as Signature is to Function

Function :

Graph :

Inputs & Outputs (Signature)

Inlets & Outlets (Shape)

val source: Source[Int]       = Source(1 to 3)
val sum:    Flow[Int, Double] = Flow[Int].fold(0.0)(_ + _)
val sink:   Sink[Double]      = Sink.foreach[Double](println)

// What is the shape of the following?
val runnable: RunnableGraph = source.via(sum).to(sink)

runnable.run

note: types intentionally simplified

Running a Graph

Akka Streams Level 1 (Basics)

implicit val system = ActorSystem("akka-streams")
implicit val materializer = ActorMaterializer()

// Create a runnable graph, steps omitted
val runnable: RunnableGraph = source.via(flow).to(sink)

// Run the graph with implicit Materializer
runnable.run()

Materializer is to Graph as

ExecutionContext is to Future

  • Graph defines blueprint (akin to function def)
  • Materializer runs a RunnableGraph (akin to function call)
    • materialization allocates runtime resources
    • Akka Streams uses Actors
    • other (Spark, for example) theoretically possible

Materialized Value

Akka Streams Level 1 (Basics)

// Materialized type is the last type parameter by convention

// Sink that materializes a Future that completes when stream completes
val printer: Sink[Int, Future[Unit]] = Sink.foreach[Int](println)

// Sink that materializes a Future that completes with the first stream element
val head: Sink[Int, Future[Int]] = Sink.head[Int]

// Sources often don't materialize anything
val source: Source[Int, Unit] = Source(1 to 3)

// Source that emits periodically until cancelled via the materialized Cancellable
val ticks: Source[Int, Cancellable] = Source(1.second, 5.seconds, 42)

// Note that the above are merely blueprints
// No materialized values are produced until a graph is materialized

// Materialize a Graph which will run indefinitely or until cancelled
// Any graph can only materialize a single value
// Both printer and ticks materialize values (Future[Unit] and Cancellable)
// runWith() selects the target's materialized value
val cancellable: Cancellable = printer.runWith(ticks)

// Cancel the materialized ticks source
cancellable.cancel

Graph materialization result

  • runtime resource produced by a Graph during materialization
  • related to / used by processing, but not part of the stream itself

Concepts Checkpoint

Akka Streams Level 1 (Basics)

// Create flow materializer
implicit val system = ActorSystem("akka-streams")
implicit val materializer = ActorMaterializer()

// Create graph components
val nums = (1 to 10)
val source: Source[Int, Unit]      = Source(nums)
val sum:    Flow[Int, Int, Unit]   = Flow[Int].fold(0)(_ + _)
val triple: Flow[Int, Int, Unit]   = Flow[Int].map(_*3)
val head:   Sink[Int, Future[Int]] = Sink.head[Int]

// Assemble and run a couple of graphs
val future1a: Future[Int] = source.via(sum).to(head).run
val future2a: Future[Int] = source.via(triple).via(sum).to(head).run

// Perform some basic tests
whenReady(future1a)(_ shouldBe nums.sum)
whenReady(future2a)(_ shouldBe (nums.sum * 3))


// Equivalent to the above graphs, using shortcuts for brevity
val future1b = Source(nums).runFold(0)(_ + _)
val future2b = Source(nums).via(triple).runFold(0)(_ + _)

Transformations

  • map, mapAsync
  • fold, scan, filter, collect
  • take, drop
  • take/drop(While|Within)
  • grouped, groupedWithin

Akka Streams Level 1 (Basics)

the usual suspects...

// Source[Out, Mat]
def mapAsync[T](parallelism: Int)(f: (Out) ⇒ Future[T]): Source[T, Mat]
def takeWhile(p: (Out) ⇒ Boolean): Source[Out, Mat]
def takeWithin(d: FiniteDuration): Source[Out, Mat]

Transformations

  • concat, concatMat
  • flatten
  • prefixAndTail, split(After|When)
  • groupBy
  • conflate, expand

Akka Streams Level 1 (Basics)

...and a few more

// Source[Out, Mat]
def prefixAndTail[U >: Out](n: Int): Source[(Seq[Out], Source[U, Unit]), Mat]
def splitWhen[U >: Out](p: (Out) ⇒ Boolean): Source[Source[U, Unit], Mat]
def groupBy[K, U >: Out](f: (Out) ⇒ K): Source[(K, Source[U, Unit]), Mat]
def conflate[S](seed: (Out) ⇒ S)(aggregate: (S, Out) ⇒ S): Source[S, Mat]
def expand[S, U](seed: (Out) ⇒ S)(extrapolate: (S) ⇒ (U, S)): Source[U, Mat]

Sample Application

Akka Streams & HTTP Level 1 (Basics)

enhanced historical price service

  • calculate simple moving average (SMA)
  • parse historical price CSV stream
  • enhance historical price CSV stream

Part I (Streams)

  • expose enhanced price service endpoint
  • request historical prices via HTTP
  • stream enhanced prices

Part II (HTTP)

Enhanced Price Service

Akka Streams Level 1 (Basics)

sample data

Date,       Open,  High,  Low,   Close, Volume,  Adj Close
2014-12-31, 25.3,  25.3,  24.19, 24.84, 1438600, 24.84
2014-12-30, 26.28, 26.37, 25.29, 25.36, 766100,  25.36
2014-12-29, 26.64, 26.8,  26.13, 26.42, 619700,  26.42
2014-12-26, 27.25, 27.25, 26.42, 26.71, 360400,  26.71
Date,       Open,  High,  Low,   Close, Volume,  Adj Close, Adj Close SMA(3)
2014-12-31, 25.3,  25.3,  24.19, 24.84, 1438600, 24.84,     25.54
2014-12-30, 26.28, 26.37, 25.29, 25.36, 766100,  25.36,     26.16

input

output

  • reverse time series (most recent price first)

http://localhost:8080/stock/price/daily/yhoo?calculated=sma(3)

http://real-chart.finance.yahoo.com/table.csv?s=yhoo& ...

Enhanced Price Service

Akka Streams Level 1 (Basics)

  • calculate
  • enhance
  • expose

Akka Streams Level 1 (Basics)

// Calculate simple moving average (SMA) using scan()
// to maintain a running sum and a sliding window
def sma(N: Int) = Flow[Double]
  .scan((0.0, Seq.empty[Double])) {
    case ((sum, win), x) =>
      win.size match {
        case N => (sum + x - win.head, win.tail :+ x)
        case _ => (sum + x,            win      :+ x)
      }
  }
  .drop(N)    // Drop initial and incomplete windows
  .map { case (sum, _) => sum / N.toDouble }
Source(1 to 5)
  .map(n => (n*n).toDouble)
  .via(sma(3))
  .runForeach(sma => println(f"$sma%1.2f")

// Output:
// 4.67
// 9.67
// 16.67

Enhanced Price Stream

simple moving average (SMA)

Akka Streams Level 1 (Basics)

import akka.stream.io.Framing

  // A CSV file row, parsed into columns
  type Row = Array[String]

  // Parse incoming bytes into CSV record stream
  // Note: Each ByteString may contain more (or less) than one line
  def parse(maximumLineLength: Int = 256): Flow[ByteString, Row, Unit] =
    Framing.delimiter(ByteString("\n"), maximumLineLength, allowTruncation = true)
      .map(_.utf8String.split("\\s*,\\s*"))


  // Select a specific column (including header) by name
  def select(name: String): Flow[Row, String, Unit] = Flow[Row]
    .prefixAndTail(1).map { case (header, rows) =>
      header.head.indexOf(name) match {
        case -1    => Source.empty[String]    // Named column not found
        case index => Source.single(name)
          .concatMat(rows.map(_(index)))(Keep.right)
      }
    }.flatten(FlattenStrategy.concat)


  // Convert row into CSV formatted ByteString
  val format = Flow[Row].map(row => ByteString(row.mkString("", ",", "\n")))

Enhanced Price Stream

CSV handling

Akka Streams Level 1 (Basics)

Enhanced Price Stream

SMA column

// Calculate and format SMA for a column, renaming the column
def smaCol(name: String, n: Int, format: String = "%1.2f") = Flow[String]
  .prefixAndTail(1)
  .map { case (header, data) =>
    Source.single(name).concatMat(
      data.map(_.toDouble)
        .via(calculate.sma((n)))
        .map(_.formatted(format))
    )(Keep.right)
  }
  .flatten(FlattenStrategy.concat)
Adj Close
  24.84
  25.36
  26.42
  26.71
Adj Close SMA(3)
    25.54
    26.16

Branching Flows

Akka Streams Level 2 (Intermediate)

a common pattern

  • branch stream (fan-out)
  • transform each branch
  • combine results (fan-in)

Fan-Out Shapes:

Fan-In Shapes:

 Broadcast, Unzip, UnzipWith

 Zip, ZipWith, Merge, MergePreferred

Graph DSL

Akka Streams Level 1 (Basics)

visual flow construction

    bcast ~>                  ~> append.in0
    bcast ~> select ~> smaCol ~> append.in1
// Calculate and append SMA column
def appendSma(n: Int): Flow[Row, Row, Unit] = Flow(
  Broadcast[Row](2),
  csv.select("Adj Close"),
  smaCol(s"Adj Close SMA($n)", n),
  ZipWith((row: Row, col: String) => row :+ col)
)((_, _, _, mat) => mat) {
  implicit builder => (bcast, select, smaCol, append) =>

    bcast ~>                     append.in0
    bcast ~> select ~> smaCol ~> append.in1

    (bcast.in, append.out)
}

appendSma

Akka Streams Level 1 (Basics)

import akka.stream.io._

val inSource = SynchronousFileSource(new File("input.csv"))
val expSource = SynchronousFileSource(new File("expected.csv"))
val builder = new ByteStringBuilder()
val outSink = Sink.foreach[ByteString](builder ++= _)
val outSource = Source(() => Iterator.single(builder.result()))

val window = 3
val smaName = s"Adj Close SMA($window)"

val future = inSource.via(csv.parse()).via(quote.appendSma(window)).via(csv.format)
  .runWith(outSink)

whenReady(future) { unit =>
  // Compare SMA column from output and expected
  val selectSma = csv.parse().via(csv.select(smaName)).drop(1).map(_.toDouble)
  val outFuture = outSource.via(selectSma).runFold(List.empty[Double])(_ :+ _)
  val expFuture = expSource.via(selectSma).runFold(List.empty[Double])(_ :+ _)

  whenReady(Future.sequence(Seq(outFuture, expFuture))) { case out :: exp :: Nil =>
    out should have size exp.size
    out.zip(exp).foreach { case (out, exp) =>
      out shouldBe exp
    }
  }
}

Enhanced Price Stream

testing

Sample Application

Akka HTTP Level 1 (Basics)

enhanced historical price service

  • calculate simple moving average (SMA)
  • parse historical price CSV stream
  • enhance historical price CSV stream

Part I (Streams)

  • expose enhanced price service endpoint
  • request historical prices via HTTP
  • stream enhanced prices

Part II (HTTP)

Introducing Akka HTTP

stream-based web services

  • "Spray 2.0" - address weaknesses and polish features
  • key improvement: fully stream-based
  • easily handle chunked responses and large entities
  • address missing features (WebSockets, anyone?)
  • reusable streams transformations
  • extensible HTTP model and spec implementation

Akka HTTP Level 1 (Basics)

From Akka Streams to HTTP

a natural mapping

in

out

Akka HTTP Level 1 (Basics)

Akka HTTP

fully stream-based

// TCP and HTTP protocols modeled as Flows
// Flow is materialized for each incoming connection

// TCP
Tcp().bindAndHandle(handler: Flow[ByteString, ByteString, _], ...)

// HTTP (server low-level)
// Q: How is HTTP pipelining supported?
Http().bindAndHandle(handler: Flow[HttpRequest, HttpResponse, Any], ...)

// HTTP (client low-level)
Http().outgoingConnection(host: String, port: Int = 80, ...): 
  Flow[HttpRequest, HttpResponse, Future[OutgoingConnection]]
// HTTP entities modeled using ByteString Sources

// Request entity modeled as a source of bytes (Source[ByteString])
val request: HttpRequest
val dataBytes: Source[ByteString, Any] = request.entity.dataBytes

// Use Source[ByteString] to create response entity
val textSource: Source[ByteString, Any]
val chunked = HttpEntity.Chunked.fromData(MediaTypes.`text/plain`, textSource)
val response = HttpResponse(entity = chunked)

Akka HTTP Level 1 (Basics)

Enhanced Price Service

Akka HTTP Level 1 (Basics)

mock service endpoint

import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.model.MediaTypes._
import akka.stream.io.SynchronousFileSource

// Find mock data file (if it exists) for the given symbol
def mockFile(symbol: String): Option[File] =
  Option(getClass.getResource(s"/mock/stock/price/$symbol.csv"))
    .map(url => new File(url.getFile))
      .filter(_.exists)

// http://localhost/stock/price/daily/yhoo
val route: Route = 
  (get & path("stock"/"price"/"daily" / Segment)) { (symbol) =>
   complete {
    mockFile(symbol) match {
      // Create chunked response from Source[ByteString]
      case Some(file) => HttpEntity.Chunked.fromData(`text/csv`, SynchronousFileSource(file))
      case None       => NotFound
    }
   }
  }

// Run a server with the given route (implicit conversion to Flow[HttpRequest, HttpResponse])
val binding = Http().bindAndHandle(route, "localhost", 8080)

Enhanced Price Service

Akka HTTP Level 1 (Basics)

fetching data

import csv.Row
import akka.http.scaladsl.Http
import akka.http.scaladsl.model.HttpEntity
import akka.http.scaladsl.model.MediaTypes._
import akka.http.scaladsl.server.Directives._

trait StockPriceClient {
  def history(symbol: String): Future[Either[(StatusCode, String), Source[Row, Any]]]
}

case class YahooStockPriceClient
    (implicit system: ActorSystem, executor: ExecutionContextExecutor, materializer: Materializer)
  extends StockPricesClient
{
  override def history(symbol: String) = {
    val uri = buildUri(symbol)   // http://real-chart.finance.yahoo.com/table.csv?s=$symbol&...

    Http().singleRequest(RequestBuilding.Get(uri)).map { response =>
      response.status match {
        case OK       => Right(response.entity.dataBytes.via(csv.parse())
        case NotFound => Left(NotFound -> s"No data found for $symbol")
        case status   => Left(status -> s"Request to $uri failed with status $status")
      }
    }
  }
}

Enhanced Price Service

Akka HTTP Level 1 (Basics)

expose service endpoint

import csv.Row
import akka.http.scaladsl.Http
import akka.http.scaladsl.model.HttpEntity
import akka.http.scaladsl.model.MediaTypes._
import akka.http.scaladsl.server.Directives._

trait StockPriceClient {
  def history(symbol: String): Future[Either[(StatusCode, String), Source[Row, Any]]]
}

val client: StockPriceClient

// http://localhost/stock/prices/daily/yhoo/sma(10)
val route: Route = 
  (get & path("stock"/"prices"/"daily" / Segment / "sma(" ~ IntValue ~ ")")) {
    (symbol, window) =>
      client.history(symbol).map[ToResponseMarshallable] {
        case Right(source) => HttpEntity.Chunked.fromData(`text/csv`, 
          source.via(quote.appendSma(window)).via(csv.format))
        case Left(err @ (NotFound, _)) => err
        case Left(_) => ServiceUnavailable -> "Error calling underlying service"
      }
  }

Enhanced Price Service

Akka Streams Level 1 (Basics)

solution review

Full Sample

Intro to Akka Streams & HTTP

https://github.com/lancearlaus/akka-streams-http-intro                        
  • Bitcoin trades OHLCV service
  • stackable services
  • WebSockets
  • custom stage
  • custom route segments / parameters
  • flow graph packaging

more to explore

⇒ git clone https://github.com/lancearlaus/akka-streams-http-introduction
⇒ sbt run
[info] Running Main
Starting server on localhost:8080...STARTED
Get started with the following URLs:
 Stock Price Service:
   Yahoo with default SMA        : http://localhost:8080/stock/price/daily/yhoo
   Yahoo 2 years w/ SMA(200)     : http://localhost:8080/stock/price/daily/yhoo?period=2y&calculated=sma(200)
   Facebook 1 year raw history   : http://localhost:8080/stock/price/daily/fb?period=1y&raw=true
 Bitcoin Trades Service:
   Hourly OHLCV (Bitstamp USD)   : http://localhost:8080/bitcoin/price/hourly/bitstamp/USD
   Daily  OHLCV (itBit USD)      : http://localhost:8080/bitcoin/price/daily/itbit/USD
   Recent trades (itBit USD)     : http://localhost:8080/bitcoin/trades/itbit/USD
   Trades raw response           : http://localhost:8080/bitcoin/trades/bitstamp/USD?raw=true

Intro to Akka Streams and HTTP

Summary

  • Reactive Streams Basics
  • Akka Streams Basics
  • Akka HTTP Basics
  • Sample Service

Questions?

Intro to Akka Streams and HTTP

By Lance Arlaus

Intro to Akka Streams and HTTP

Got Streams? Streams are an effective way to model many real-world data problems from event processing to the typical service request/response cycle. Learn the basics of Akka Streams & HTTP through a practical introductory training talk, no prior Streams experience required. The talk will cover Akka Streams from the ground up, starting with Reactive Streams concepts, to give participants a solid foundation. Akka Streams & HTTP building blocks and capabilities will be explained and showcased via a stream processing example exposed as an Akka HTTP service.

  • 5,644