Quantum Machine Learning

Min-Hsiu Hsieh

University of Technology Sydney

Biamonte et. al., Nature volume 549, pages 195–202, 2017

Quantum Machine Learning

Quantum Fourier Transform

QFT: \(|x\rangle\mapsto \frac{1}{\sqrt{N}}\sum_{k=1}^N \omega_n^{xk} |x\rangle\), \(N=2^n\)

QFT requires only \(O(n^2)\) gates.

Used in Quantum Phase Estimation, etc.

Quantum Phase Estimation

Given is \(U\) and \(|\psi\rangle\) so that \(U|\psi\rangle = e^{i2\pi\theta}|\psi\rangle\)

QPE can estimate \(\theta\) using \(O(\frac{1}{\epsilon})\) operations.

Used in Shor's and HHL algorithm

Harrow et. al., Phys. Rev. Lett. vol. 15, no. 103, pp. 150502 (2009)

Matrix Inversion

Solving \(A|\bm{x}\rangle=|\bm{b}\rangle\) so that \(\langle\bm{x}|M|\bm{x}\rangle\) can be estimated with \(O(\kappa\log N)\)

The best classical algorithm requires \(O(N\sqrt{\kappa})\) operations.

Grover Search

P_\omega= |\omega\rangle\langle \omega|
Pω=ωωP_\omega= |\omega\rangle\langle \omega|
P_s= |+\rangle\langle +|^{\otimes n}
Ps=++nP_s= |+\rangle\langle +|^{\otimes n}
U_s= 2|+\rangle\langle +|^{\otimes n} - I
Us=2++nIU_s= 2|+\rangle\langle +|^{\otimes n} - I
U_\omega= 2|\omega\rangle\langle \omega| - I
Uω=2ωωIU_\omega= 2|\omega\rangle\langle \omega| - I

How to identify

from

Grover Search

Recommendation Systems

O(\text{poly}(k)\text{poly}\log(mn))
O(poly(k)polylog(mn))O(\text{poly}(k)\text{poly}\log(mn))

Estimate an \(m\times n\) matrix with rank \(k\).

[2] Tang, arXiv:1807.04271, 2018

[1] Kerenidis and Prakash. arXiv:1704.04992, 2017.

Variational Quantum Perceptron and Classification of Nonlinear Data

Du, MH, Liu and  Tao. Implementable Quantum Classifier for Nonlinear Data. arXiv:1809.06056

Variational Grover Search

\min_{\phi} \langle \phi |P_{\omega^\perp} | \phi\rangle
minϕϕPωϕ\min_{\phi} \langle \phi |P_{\omega^\perp} | \phi\rangle

Learn \(|\phi\rangle\) using trainable quantum circuits.

Morales, Tlyachev, and  Biamonte. Variationally Learning Grover’s Quantum Search Algorithm. arXiv:1805.09337

U(\alpha) = e^{i\alpha P_\omega}
U(α)=eiαPωU(\alpha) = e^{i\alpha P_\omega}
V(\beta) = e^{i\beta P_s}
V(β)=eiβPsV(\beta) = e^{i\beta P_s}

Variational Grover Search

Variational Quantum Perceptron

\mathcal{D} = \{\bm{x}_i \in \mathbb{R}^M, y_i\in\{\pm 1\}\}_{i=1}^N
D={xiRM,yi{±1}}i=1N\mathcal{D} = \{\bm{x}_i \in \mathbb{R}^M, y_i\in\{\pm 1\}\}_{i=1}^N
|\Phi^{(k)}\rangle_{F,I}= U_{data}(\mathcal{D})
Φ(k)F,I=Udata(D)|\Phi^{(k)}\rangle_{F,I}= U_{data}(\mathcal{D})
U_k|\Phi^k\rangle_{F,I}=\frac{1}{\sqrt{N}}\left(\sum_{i=0,i\neq k}^{N-1}|\psi_i^{(0)}\rangle_{F}|i\rangle_I -|\psi_k^{(1)}\rangle_{F}|k\rangle_I\right).
UkΦkF,I=1N(i=0,ikN1ψi(0)FiIψk(1)FkI).U_k|\Phi^k\rangle_{F,I}=\frac{1}{\sqrt{N}}\left(\sum_{i=0,i\neq k}^{N-1}|\psi_i^{(0)}\rangle_{F}|i\rangle_I -|\psi_k^{(1)}\rangle_{F}|k\rangle_I\right).

Variational Quantum Perceptron

(U_{dis}\otimes\mathbb{I})U_f|\Phi^k\rangle_{F,I}=|\Phi^k\rangle_F\otimes\frac{1}{\sqrt{N}}\left(\sum_{i\neq k}|i\rangle_I - |k\rangle_I\right)
(UdisI)UfΦkF,I=ΦkF1N(ikiIkI)(U_{dis}\otimes\mathbb{I})U_f|\Phi^k\rangle_{F,I}=|\Phi^k\rangle_F\otimes\frac{1}{\sqrt{N}}\left(\sum_{i\neq k}|i\rangle_I - |k\rangle_I\right)

Variational Quantum Perceptron

Variational Quantum Perceptron

Quantum Ensemble Learning

Combine weak VQP \(\{V_t\}\) into strong classifier \(\rm{sign}(\sum_t |y_t - C_T|)\).

Required significant smaller size of training sets

Quantum Ensemble Learning

Query Complexity \(O(T\text{poly}(\log M\sqrt{\log N})\).

Runtime \(O(\text{poly}(\log M \log( M\sqrt{\log N}))\sqrt{\log N})\).

If \(|\mathcal{D}_t|\approx \log \sqrt{N} \)

Quantum Ensemble Learning

\( \mathcal{D}=\{\bm{x}_i,y_i\}_{i=1}^{10000} \)

\( \mathcal{D}_i=\{\bm{x}_k,y_k\}_{k=1}^{8} \)

Quantum Ensemble Learning

\( \mathcal{D}=\{\bm{x}_i,y_i\}_{i=1}^{10000} \)

\( \mathcal{D}_i=\{\bm{x}_k,y_k\}_{k=1}^{8} \)

Encoding requires 29 single and two qubits gates.

Oracles require 36 parameterized single qubit gates, 6 CNOT gates, 3 CZ gates, 24 Hadamard gates, and 3 Toffoli gates.

Part II

The Expressive Power of Parameterized Quantum Circuits

What is the generative power of parametrized quantum circuits?

MPQC

- arXiv:1801.07686, arXiv:1804.04168

TPQC

arXiv:1803.11537

Boltzmann Machine

Boltzmann Machine

Part III

Quantum Divide-and-Conquer GAN

Seth Lloyd and Christian Weedbrook. "Quantum generative adversarial learning". Phys. Rev. Lett. 121, 040502 (2018)

Generative Adversarial Network

Thank you for your attention!

Quantum Machine Learning

By Lawrence Min-Hsiu Hsieh

Quantum Machine Learning

  • 134