Parameterized Quantum Circuits

 

Min-Hsiu Hsieh

University of Technology Sydney, Australia

 

and Its Applications in Machine Learning

Machine Learning Tasks

PQC Can Achieve 

"In computational complexity-theoretic terms, this generally means providing a superpolynomial speedup over the best possible classical algorithm."

Quantum supremacy

QML applications are natural candidates for NISQ devices. 

Part I

Parameterized Quantum

Circuits

and many more!

PQC

q(X)
\theta

Classical Optimization

Classical Optimization

\theta = \arg \min_{\bm{\theta}} \mathcal{L}(q(X),p(X))

Given an loss function \(\mathcal{L}\), PQC output \(q(X)\), a target distribution \(p(X)\),

Part II

PQC as Quantum Perceptron

and more!

Quantum Perceptron

Grover Search

P_\omega= |\omega\rangle\langle \omega|
P_s= |+\rangle\langle +|^{\otimes n}
U_s= 2|+\rangle\langle +|^{\otimes n} - I
U_\omega= 2|\omega\rangle\langle \omega| - I

How to identify

from

Grover Search

Variational Grover Search

\min_{\phi} \langle \phi |P_{\omega^\perp} | \phi\rangle

Learn \(|\phi\rangle\) using trainable quantum circuits.

Morales, Tlyachev, and  Biamonte. Variationally Learning Grover’s Quantum Search Algorithm. arXiv:1805.09337

U(\alpha) = e^{i\alpha P_\omega}
V(\beta) = e^{i\beta P_s}

Variational Grover Search

Variational Quantum Perceptron

Variational Quantum Perceptron

\mathcal{D} = \{\bm{x}_i \in \mathbb{R}^M, y_i\in\{\pm 1\}\}_{i=1}^N
|\Phi^{(k)}\rangle_{F,I}= U_{data}(\mathcal{D})
=\frac{1}{\sqrt{N}}\left(\sum_{i=0,i\neq k}^{N-1}|\psi_i^{(0)}\rangle_{F}|i\rangle_I -|\psi_k^{(1)}\rangle_{F}|k\rangle_I\right).

Variational Quantum Perceptron

U_{c1}|\Phi^k\rangle_{F,I}=|\varphi\rangle_F\otimes\left(\cos3\theta|B\rangle_I+\sin3\theta|k\rangle_I\right)
U_{L_1}|{\Phi^k}\rangle_{F,I}= \cos\theta(\textcolor{red}{\alpha_B}|\psi_B^{(0)}\rangle_F+ \textcolor{green}{\beta_k}|\psi_k^{(1)}\rangle_F)|{B}\rangle_I + \sin\theta(-\textcolor{red}{\alpha_B}|\psi_B^{(0)}\rangle_F+ \textcolor{green}{\beta_k}|\psi_k^{(1)}\rangle_F)|{k}\rangle_I

VQP Performance

N=16, M=4

Performance

N=16, M=4

Quantum Ensemble Learning

Combine weak VQP \(\{V_t\}\) into strong classifier \(\rm{sign}(\sum_t |y_t - C_T|)\).

Required significant smaller size of training sets

QEL Complexity 

Query Complexity \(O(\textcolor{red}{T}\text{poly}(\log M\textcolor{green}{\sqrt{\log N}}))\).

Runtime \(O(\text{poly}(\log M \log( M\sqrt{\log N}))\sqrt{\log N})\).

If \(|\mathcal{D}_t|\approx \log {N} \)

QEL Performance

\( \mathcal{D}=\{\bm{x}_i,y_i\}_{i=1}^{10000} \)

\( \mathcal{D}_i=\{\bm{x}_k,y_k\}_{k=1}^{8} \)

Gate Count

\( \mathcal{D}=\{\bm{x}_i,y_i\}_{i=1}^{10000} \)

\( \mathcal{D}_i=\{\bm{x}_k,y_k\}_{k=1}^{8} \)

Encoding requires 29 single and two qubits gates.

QEL requires 48 parameterized single qubit gates, 8 CNOT gates, 12 NOT gates, 20 Hadamard gates, and 10 Toffoli gates.

Total of 248 single and two-qubit gates.

Part III

The Expressive Power of Parameterized Quantum Circuits

What is the generative power of parametrized quantum circuits?

MPQC

- arXiv:1801.07686, arXiv:1804.04168

TPQC

arXiv:1803.11537

Boltzmann Machine

Boltzmann Machine

MPQC\(>\)DBM\(>\)TPQC\(>\)RBM

Expressive Power:

IQP circuits

MPQC\(>\)DBM

IQP Circuit Can be simulated by MPQCs with the following arrangement.

DBM\(>\)TPQC

TPQC\(>\)RBM

TPQC can generate entangled state with volume law (Bond Dimension \(O(D^N)\)). 

RBM Cannot!

  1. Gao and Duan, Nature Communications 8, 662 (2017).

  2. Chen et. al., Physical Review B 97, 085104 (2018).

MPQC with Post-Selection

MPQC with post-selection can simulate General Tensor Networks.

Part VI

Quantum Divide-and-Conquer GAN

Seth Lloyd and Christian Weedbrook. "Quantum generative adversarial learning". Phys. Rev. Lett. 121, 040502 (2018)

Generative Adversarial Network

Thank you for your attention!

Quantum Machine Learning

By Lawrence Min-Hsiu Hsieh

Quantum Machine Learning

QI school at Kyoto University, 18-20 of March 2019

  • 399