Challenges and Opportunities of Quantum Machine Learning
Min-Hsiu Hsieh (謝明修)
Hon Hai Quantum Computing Center
Unknown Function
Training Data
Hypothesis Set
Learning
Algorithm
Comp. Complexity
Sample Complexity
Quantum Computation
Classical Bit \(x\in\mathbb{Z}=\{0,1\}\)
QuBit \(\rho\in\mathbb{C}^{2\times 2}\geq0\) & Tr\([\rho]=1\)
Random Bit \(\left(\begin{array}{cc} p(0) & 0\\ 0 & p(1) \end{array}\right)\) is a special case.
Quantum Computation
Quantum Operation: \(\rho\mapsto\sigma\)
Unitary is a special case.
Quantum Measurement: \(\rho\mapsto\mathbb{R}\)
Quantum Challenge #1
Noncommutative: \(AB\neq BA\)
Moment Generating Function: \(\mathbb{E}e^{\theta (A+B)}\neq\mathbb{E}e^{\theta A}e^{\theta B}\)
Quantum Challenge #2
Entanglement: \(\rho_{AB}\neq \rho_{A}\otimes\rho_B\)
Problem Setup
Alice
Bob
Compute \((QS+RS+RT-QT)\)
Classical Mechanics
\(\theta=(Q+R)S+(R-Q)T\leq 2\)
Let \(\text{p}(qrst) := \text{Pr}\{Q=q,R=r,S=s,T=t\}\).
Probabilistically,
Quantum Mechanics
Quantum Mechanics
Why Quantum Computation Matters?
Many More!
Type of Input
Type of Algorithms
CQ
CC
QC
QQ
CQ
QQ
QC
-
Linear Equation Solvers
-
Peceptron
-
Recommendation Systems
-
Semidefinite Programming
-
Many Others (such as non-Convex Optimization)
-
State Tomography
-
Entanglement Structure
-
Quantum Control
CC
-
Linear Equation Solvers
-
Recommendation Systems
-
Semidefinite Programming
-
Minimum Conical Hull
Quantum-Inspired Classical Algorithms
CQ
QC
Readin
Readout
Q.C.
Input Models
[1] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008).
Readout
Readout
Our readout improvement
Given: Input \(A\in\mathbb{R}^{m\times n}\) of rank \(r\) &
\(|v\rangle \in\text{row}(A)\)
Thm: poly(\(r,\epsilon^{-1}\)) query to QRAM &
poly(\(r,\epsilon^{-1}\)) copies of \(|v\rangle\).
[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. arXiv:2004.06421
High Level Proof
1. \(|v\rangle = \sum_{i=1}^r x_i |A_{g(i)}\rangle\in\text{row}(A)\)
2. quantum Gram-Schmidt Process algorithm to construct \(\{A_{g(i)}\}\)
3. Obtain \(\{x_i\}\).
Neural Networks
Expressive Power
\(\rangle\)
\(\rangle\)
\(\rangle\)
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao. The Expressive Power of Parameterized Quantum Circuits. Physical Review Research 2, 033125 (2020) [arXiv:1810.11922].
Trainability of QNN
Gradients vanish to zero exponentially with respect to the number of qubits.
Barren Plateau problem:
[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):1– 6, 2018.
Trainability of QNN
[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Quantum Neural Networks. arXiv:2011.06258 (2020).
Thm:
Learnability of QNN
Learnability = trainability + generalization
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
Trainability of QNN: ERM
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
Trainability of QNN: ERM
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
Trainability of QNN: ERM
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
Generalization of QNN
[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)
Thm:
Quantum Statistical Query algorithms can be efficiently simulated by QNN.
QQ
-
Entanglement Test
with Jian-Wei Pan's group (submitted)
Quantum Generative and Adversarial Networks (QGAN)
[1] Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Physical review letters 121, 040502 (2018).
Results
Error Mitigation
Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).
Hydrogen Simulation
CQ
QQ
CC
Sample Complexity
Training Data
Hypothesis Set
Unknown Function
Given a loss function
find
where
Empirical Risk Minimization
if for any \(\epsilon>0\)
Probably Approximately Correct (PAC) Learnable
\(\mathcal{H}\) is PAC learnable
$$ \lim_{n\to\infty}\sup_{\mu} \Pr\{\sup_{h\in\mathcal{H}}|R(h) - R_n(h)| >\epsilon\} = 0$$
Sample Complexity
\(\sup_{\mu} \Pr \left\{ \sup_{h\in\mathcal{H}} \big|R(h)-R_n(h)\big|\geq \epsilon \right\}\leq \delta\)
Sample complexity \(m_\mathcal{H}(\epsilon,\delta)\) is the first quantity such that
for every \(n\geq m_\mathcal{H}(\epsilon,\delta),\)
\(m_{\mathcal{H}}(\epsilon,\delta)= \frac{C}{\epsilon^2}\left(\text{VCdim}(\mathcal{H})\log\left(\frac{2}{\epsilon}\right)+\log\left(\frac{2}{\delta}\right)\right)\)
For Boolean functions \(\mathcal{H}\)
[1] Vapnik, Springer-Verlag, New York/Berlin, 1982.
[2] Blumer, Ehrenfeucht, Haussler, and Warmuth, Assoc. Comput. Machine, vol. 36, no. 4, pp. 151--160, 1989.
\(Z=\sup_{f\in\mathcal{F}}\big| \sum_{i=1}^n f(x_i)\big|\)
\({Z}=\sup_{\bm{f}\in\mathcal{F}}\left\| \sum_{i=1}^n \bm{f}(\bm{X}_i)\right\|_p.\)
There are only very limited matrix concentration results!!
[1] Joel Tropp. User-friendly tail bounds for sums of random matrices. arXiv:1004.4389.
Sample Complexity for Learning Quantum Objects
Q. State
Measurement
Hypothesis Set
Training Data
Unknown Function
Hypothesis Set
Training Data
Unknown Function
fat\(_{\mathcal{D}(\mathcal{H})}(\epsilon,\mathcal{E}(\mathcal{H})) = O(\log d/\epsilon^2)\)
Sample Complexity for Learning Quantum States
Hypothesis Set
Training Data
Unknown Function
Learning Unknown Measurement
Learning States
Learning Measurements
fat\(_{\mathcal{D}(\mathcal{H})}(\epsilon,\mathcal{E}(\mathcal{H})) = O(\log d/\epsilon^2)\)
fat\(_{\mathcal{E}(\mathcal{H})}(\epsilon,\mathcal{D}(\mathcal{H})) = O( d/\epsilon^2)\)
Hao-Chung Cheng, MH, Ping-Cheng Yeh. The learnability of unknown quantum measurements. QIC 16(7&8):615–656 (2016).
Thank you for your attention!
Challenges and Opportunities of Quantum Machine Learning
By Lawrence Min-Hsiu Hsieh
Challenges and Opportunities of Quantum Machine Learning
CSIE, NTU. 16 July 2019
- 106