Challenges and Opportunities of Quantum Machine Learning

謝明修

雪梨科技大學->鴻海研究院

第一屆台灣量子科技共識論壇

f: X\to Y

Unknown Function

\{(x_i,y_i)\}_{i=1}^N

Training Data

\mathcal{H}

Hypothesis Set

Learning

Algorithm

\hat{f}

Comp. Complexity

Sample Complexity

Quantum Computation 

Classical Bit \(x\in\mathbb{Z}=\{0,1\}\)

QuBit \(\rho\in\mathbb{C}^{2\times 2}\geq0\) & Tr\([\rho]=1\)

Random Bit \(\left(\begin{array}{cc} p(0) & 0\\ 0 & p(1) \end{array}\right)\) is a special case.

Quantum Computation 

Quantum Operation: \(\rho\mapsto\sigma\) 

Unitary is a special case. 

Quantum Measurement: \(\rho\mapsto\mathbb{R}\) 

Quantum Challenge #1

Noncommutative: \(AB\neq BA\) 

Moment Generating Function: \(\mathbb{E}e^{\theta (A+B)}\neq\mathbb{E}e^{\theta A}e^{\theta B}\) 

\frac{a}{b} \mapsto A B^{-1}?
e^{a+b} \mapsto e^A e^B?

Quantum Challenge #2

Entanglement: \(\rho_{AB}\neq \rho_{A}\otimes\rho_B\) 

Why Quantum Computation Matters?

Many More!

Type of Input

Type of Algorithms

CQ
CC
QC
QQ
CQ
QQ
QC
  • Linear Equation Solvers

  • Peceptron

  • Recommendation Systems

  • Semidefinite Programming

  • Many Others (such as non-Convex Optimization)

  • State Tomography

  • Entanglement Structure

  • Quantum Control

CC
  • Linear Equation Solvers

  • Recommendation Systems

  • Semidefinite Programming

  • Minimum Conical Hull  

Quantum-Inspired Classical Algorithms 

CQ
QC
Readin
Readout
Q.C.

Input Models

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008).

Readout

\text{In general, requires } O(\frac{rd}{\epsilon^2}) \text{ copies of } \rho.

Our readout improvement

Given: Input \(A\in\mathbb{R}^{m\times n}\) of rank \(r\) &

\(|v\rangle \in\text{row}(A)\)

Thm: poly(\(r,\epsilon^{-1}\)) query to QRAM &

poly(\(r,\epsilon^{-1}\)) copies of \(|v\rangle\).

[1] Efficient State Read-out for Quantum Machine Learning Algorithms. Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. arXiv:2004.06421 

High Level Proof

1. \(|v\rangle = \sum_{i=1}^r x_i |A_{g(i)}\rangle\in\text{row}(A)\)

2. quantum Gram-Schmidt Process algorithm to construct \(\{A_{g(i)}\}\)

3. Obtain \(\{x_i\}\).

Neural Networks

Expressive Power

\(\rangle\)

\(\rangle\)

\(\rangle\)

[1] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao. The Expressive Power of Parameterized Quantum Circuits. Physical Review Research 2, 033125 (2020) [arXiv:1810.11922].

Trainability of QNN

Gradients vanish to zero exponentially with respect to the number of qubits.

Barren Plateau problem:

[1] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9(1):1– 6, 2018.

Trainability of QNN

[1] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao. Toward Trainability of Quantum Neural Networks. arXiv:2011.06258 (2020).

\mathbb{E}_{\bm{\theta}} \|\nabla_{\bm{\theta}} f_{\text{TT}} \|\geq O(\frac{2^{-2L}}{n})

Thm:

Learnability of QNN

Learnability = trainability + generalization

[1] ​Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, Dacheng Tao. On the learnability of quantum neural networks. arXiv:2007.12369 (2020)

QQ
  • Entanglement Test

with Jian-Wei Pan's group (in preparation)

Quantum Generative and Adversarial Networks (QGAN)

\mathcal{L}(\sigma_G,\mathcal{D}) = P(\text{True}|\sigma_G)P(G) + P(\text{False}|\rho)P(R),
\min_{\sigma_G}\max_{\mathcal{D}}\mathcal{L}(\sigma_G,\mathcal{D})
[1] Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Physical review letters 121, 040502 (2018). 

Results

Error Mitigation

Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, Dacheng Tao. Quantum circuit architecture search: error mitigation and trainability enhancement for variational quantum solvers. arXiv:2010.10217 (2020).

Hydrogen Simulation

Thank you for your attention!

Copy of Challenges and Opportunities of Quantum Machine Learning

By Lawrence Min-Hsiu Hsieh

Copy of Challenges and Opportunities of Quantum Machine Learning

CSIE, NTU. 16 July 2019

  • 96