A Spectrum of Types

Luca Franceschini

PhD seminars series @ DIBRIS
23 May 2019

(stolen title)

Static

 
  • Static guarantees
  • More verbose
  • Stricter
  • More scalable
  • "I'm used to it"

Dynamic

  • Dynamic checks
  • Less typing (pun intended)
  • More freedom
  • Better prototyping
  • "Everyone uses it"

... it's not that simple

 

THE RELIGIOUS WAR

 

CONCISENESS

 
fun doCoolStuff(a, b) {
    // bla bla
    var x = a.method();
    var y = b.anotherMetod();
    return a+b;
}
fun doCoolStuff(a: String, b: Int): Int {
    // bla bla with types
    var x: Int = a.method();
    var y: Int = b.anotherMetod();
    return x+y;
}

CONCISENESS?

 
fun doCoolStuff(a, b) {
    if (a !is String)
        throw Exception("gimme a string")
    if (a !is Int)
        throw Exception("gimme a number")

    // bla bla
    var x = a.method();
    var y = b.anotherMetod();
    return a+b;
}
fun doCoolStuff(a: String, b: Int): Int {
    // bla bla with types
    var x: Int = a.method();
    var y: Int = b.anotherMetod();
    return x+y;
}

CONCISENESS...

 
/**
 * {a} must be of type String.
 * {b} must be of type Int.
 * {return}s an object of type Int.
 */
fun doCoolStuff(a, b) {
    if (a !is String)
        throw Exception("gimme a string")
    if (a !is Int)
        throw Exception("gimme a number")

    // bla bla
    var x = a.method();
    var y = b.anotherMetod();
    return a+b;
}
fun doCoolStuff(a: String, b: Int): Int {
    // bla bla with types
    var x: Int = a.method();
    var y: Int = b.anotherMetod();
    return x+y;
}

... and maybe some not-that-interesting unit tests

DUCK TYPING

 
fun doCoolStuff(a, b) {
    // bla bla
    var x = a.method();
    var y = b.anotherMetod();
    return a+b;
}
fun doCoolStuff(a: String, b: Int): Int {
    // bla bla with types
    var x: Int = a.method();
    var y: Int = b.anotherMetod();
    return x+y;
}

The Python way: "If it walks like a duck and it quacks like a duck, then it must be a duck"

bartender.shot()
gun.shot()

A SUBTLE BUG

 
// some stuff

writer.write(myInt);

// some more

A SUBTLE BUG

 
// some stuff

writer.write(7);

// some more

A SUBTLE BUG

 

Documentation: "write(Int) takes a Unicode number and prints the corresponding character."

"Many programmers have used very poor statically typed languages.


Many programmers have used dynamically typed languages very poorly."

 

["What to Know Before Debating Type Systems", Chris Smith, 2011]

"You take the blue pill, the story ends, you wake up in your Python IDE and write whatever you want to write. You take the red pill, you stay in Type theory, and I show you how deep the rabbit hole goes." (~Matrix)

How far can we go with types?

fun doCoolStuff(a: String, b: Int): Int {
    // bla bla with types
    var x: Int = a.method();
    var y: Int = b.anotherMetod();
    return x+y;
}
\mathit{doCoolStuff} \;:\; \mathit{String} \to \mathit{Int} \to \mathit{Int}

SIMPLE TYPES

 
fun <T> length(l: List<T>): Int {
    // somehow count elements...
    return size;
}
\mathit{length} \;:\; \forall T . [T] \to \mathit{Int}
  • Variance
  • Wildcards
  • Constraints
  • F-bounded quantification
fun foo(l: List<Apple>) { ... }

// should this work?
foo(listOf<GreenApple>());

// should this work?
foo(listOf<Fruit>());
// Java

void foo(List<? extends Apple> l) { ... }

// this now works
foo(listOf<GreenApple>());

// this doesn't
foo(listOf<Fruit>());
// C#

void foo<T>(T obj) where T : new() {
    // here I can do this
    var x = new T();
}
// Java

void <T> sort(
        List<T extends Comparable<T>> l) {
    // sorting algorithm
}

POLYMORPHIC TYPES

 
data Tree a = Leaf
            | Node a (Tree a) (Tree a)
\mathit{stringTree} \;:\; \mathit{Tree}\; \mathit{String}

"dad"

"son"

\mathit{Tree} \;:\; * \to *
\mathit{String} \;:\; *
let stringTree = Node "dad"
    Leaf
    (Node "son" Leaf Leaf)

TYPE OPERATORS

 

DEPENDENT TYPES

 
data Vec : Nat -> Type -> Type where ...
u = ["foo"]
v = [1, 2, 3]
u \;:\; \mathit{Vec}\ 1\ \mathit{String}
\mathit{concat} \;:\; \mathit{Vec}\ T\ n \to \mathit{Vec}\ T\ m \to \mathit{Vec}\ T\ (m+n)
v \;:\; \mathit{Vec}\ 3\ \mathit{Int}

LAMBDA CUBE

 

(a lot of) THINGS I IGNORED

 
  • Types outside the cube
  • Set-theoretic types
  • Behavioral types
  • Optional/gradual typing
  • Type inference
  • Decidability
  • ...

PhD seminar 2019

By Luca Franceschini

PhD seminar 2019

  • 980