Tomography on Continuous Variable Quantum Systems
Ludmila Augusta Soares Botelho
Departamento de Física - ICEx - Universidade Federal de Minas Gerais
Representations
Discrete
Continuous
Experiment
Data
Quantum Mechanics
Data
Quantum State
Representations
Discrete
Continuous
Quantum States
Discrete
Continuous
Phase Space
- Wigner Function
$$W(q,p) = \frac{1}{2\pi\hbar} \int \left\langle q-\frac{v}{2}\right\vert \rho\left\vert q+\frac{v}{2}\right\rangle e^{ipv/\hbar}\mathrm{d}v$$
- Allows Negative Values
- Quasi-probability
Homodyne Detection
2-1
$$\vert \alpha \rangle$$
signal
50/50
Intensity Photon number
$$I_{21} = I_1 - I_2$$
$$ \propto$$
Radom Transform
$$\langle{q_{\theta}}\vert\rho \vert{q_{\theta}}\rangle \rightarrow W(q,p)$$
$$W(q,p) \rightarrow \langle{q_{\theta}}\vert\rho \vert{q_{\theta}}\rangle $$
?
Inverse Radom
What about multi-mode state?
Convex Optmization
min
s.t
$$\rho \succeq 0$$
$$\mathrm{Tr}(\rho) = 1$$
-
Semi-definite programming
-
Fock Basis
$$\sum_{i \in \mathcal{I}} \Delta_i + \delta$$
$${\rho, \Delta, \delta}$$
$$\left\vert \mathrm{Tr}({E_i \rho) -f_i} \right\vert \leqslant \Delta_i f_i$$
$$i \in \mathcal{I}$$
$$\mathrm{Tr}({ E_i\rho} )\leqslant \delta$$
$$i \notin \mathcal{I}$$
$$\vert q_{\theta}\rangle\!\langle{q_{\theta}}\vert= \sum \psi_n^*(q) \psi_m(q) \exp[i(m-n)]\vert{n}\rangle\!\langle{m}\vert$$
Ludmila A. S. Botelho, Reinaldo O. Vianna, Eur. Phys. J. D 74, 42 (2020)
10.1140/epjd/e2020-100649-3 |
And now for something completely different
Separability
- Partial Transposition
$$\rho^{T_B} = \sum_i p_i \left(\rho_i^A \otimes (\rho_i^B)^T\right)$$
Huge Dimension
Separability
- Covariance Matrix
- SDP
Positive Maps
- Density Operator vs Moment Matrix
- Entanglement Witness
(But Not Completely Positive)
Sep
$$\rho$$
$$\mathit{W}$$
Ent
$$M$$
$$\mathit{W}'$$
Thank You!
Tomography on Continuous Variables Quantum Systems
By ludmilaasb
Tomography on Continuous Variables Quantum Systems
- 197