Mateo Sanabria Ardila
ISIS1105: Diseño y análisis de algoritmos
Exploración de grafos de estados
Capitulo 9: Combinational Search
- Backtracking
- Best-First Search
- A* Heuristic
Backtracking
Es una método sistemático de recorrer todas las posibilidades de un espacio de búsqueda. Por ejemplo:
-
Todas las posibles configuraciones de determinados elementos.
-
Enumerar todos los ST de un grafo.
-
Obtener todos los caminos entre dos vertices.
- ...
Backtracking
Un problema es considero para ser resuelto con este método si se debe generar cada posible configuración exactamente una única vez
-
'Enumera' todas las posibilidades en el espacio de estados.
-
Nunca visita un estado mas de una vez.
Backtracking
All Subsets
Cuales son los subconjuntos de un conjunto de tamaño n ?
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
# Funcion booleana para saber si los primeros k
# elementos de a forman una solucion completa
# para UNA solucion del problema
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
# Guarda, printea, cuenta o procesa la solucion
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
# Asigna valores en c con el posible conjunto de
# valores candidatos para la posicion k de a,
# basados en las k-1 posiciones. El numero de
# candidatos es retornado en nc.
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
def backtrack(a: list, k: int, additional_input: Any) -> None:
c = [0 for _ in range(MaxCandidates)]
nc = 0
if is_solution(a,k,additional_input):
process_solution(a,k,additional_input)
else:
k = k + 1
nc = construct_candidate(a,k,additional_input,c)
for i in range(0,nc):
a[k] = c[i]
make_move(a,k,additional_input)
backtrack(a,k,additional_input)
unamake_move(a,k,additional_input)
if finished:
return
Backtracking
All Permutation
-
Construir una lista de n elementos.
-
El conjunto de candidatos para el i-ésimo elemento serán todos los elementos que no aparecen en la solucion parcial.
S_k = \{1,\cdots,n\} - \{a_1,\cdots,a_k\}
Exploración de grafos de estados
By Mateo Sanabria Ardila
Exploración de grafos de estados
- 206