Kartografická vizualizace IV

Exploratory tools

Exploratory Data Analysis

  • hypothesis creation
  • data patterns revelation
  • exploration, not visualization
  • statistics

ESDA tools

scatter plot

ESDA tools

parallel coordinate plot

ESDA tools

brushing

  • connected display of spatial and tabular/statistical data

 

paneling

  • one visualization for multiple subsets of data

ESDA tools

k-means clustering

  • given: data 
  • points are nearer to the center in "their" cluster
  • each cluster has an unknown "center" - how do you choose one?

ESDA tools

k-means clustering

  • sum distances to center over clusters - try to minimize this value
  • only numeric attributes, yields different results
  1. initialize centers (from 1 to k)
  2. for each point:
    1. find nearest centroid
    2. assign the point to cluster
  3. for each centroid:
    1. calculate new position based on average of attribute values
  4. stop when no points change memberships

ESDA tools

k-means clustering

  • Cluster 3.0 
  • http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

 

can you think of any disadvantages of this algorithm?

ESDA tools

principal component analysis (PCA)

  • directions where there is the most variance
  • eigenvectors = directions
  • eigenvalue = how much variance there is in eigenvector
  • principal component = eigenvector with the highest eigenvalue
  • eigenvectors put the data into a new set of dimensions
  • can be used to reduce the dimensions of a data set

ESDA tools

  • ESTAT
  • CCmaps
  • GeoDa
  • GeoVIZ
  • CommonGIS
  • TimeMap
  • https://walkerke.shinyapps.io/neighborhood_diversity/

Kartografická vizualizace IV: clustering

By Michal Zimmermann

Kartografická vizualizace IV: clustering

  • 1,526