Patrick Power PRO
Economics PhD @ Boston University
All U.S. Houses
Price
Size
Sample Size
Features
Neighbors
Sample Space
SET A
SET B
(Countable)
(Uncountable)
All U.S. Houses
Price
Price
Price
Price of House
Average Price Given Its Size
Error Term
Price of House
Slope
Error Term
Y-intercept
Observed
Build & Fit
Interest
Setup
Learning From Data
(1) Data
(2) Function Space
Parameter Space
(3) Objective Function
(4) Solver
(Build & Fit)
All U.S. Houses
Price
Size
All U.S. Houses
Price
Size
Data
Model
Set of Parameters
Set of Outcomes
Set of Possible Data Sets
Set of Parameters
Set of Outcomes
Set of Possible Data Sets
Set of Parameters
Set of Possible Data Sets
Set of Parameters
Set of Outcomes
Set of Possible Data Sets
Set of All Linear Models With Price As the Dependent Variable
Best Parameter Values
Set of All Linear Models With Price As the Dependent Variable
Best Parameter Values
Best Parameter Values
Best Parameter Values
Set of All Single Variable Linear Models With Price As the Dependent Variable
Best Parameter Values
Best Parameter Values
Best Parameter Values
Best Parameter Values
Set of All Multiple Linear Regression Models with Two Independent Variables Where Price is the Dependent Variable and Size is the First Independent VariableÂ
Best Parameter Values
Best Parameter Values
Best Parameter Values
Best Parameter Values
Original Data Set
Train
Data Set
Test
Data Set
For a given linear equation, find the parameters with the lowest MSE on the Training Data Set
Evaluate the preformance of the estimated parameters on the test set
70%
30%
From Sampling
Model Misspecification
Inherent Noise
Sources of Prediction Error
Set of Functions linear in X
Model Misspecification Error
Conditional Expectation Function
Set of Functions of X
Set of Functions linear in X
Model Misspecification Error
Conditional Expectation Function
Set of Functions of X
Set of Functions Linear in Parameters
Data Set
By Patrick Power