Roberto Calandra PRO
Full Professor at TU Dresden. Head of the LASR Lab. Working in AI, Robotics and Touch Sensing.
Roberto Calandra
IROS 2025 - 22 August 2025
LASR Lab
From the lab of Dr. Ronald Johansson, Dept. of Physiology, University of Umea, Sweden
Rodney Brooks - Why Today’s Humanoids Won’t Learn Dexterity
https://rodneybrooks.com/why-todays-humanoids-wont-learn-dexterity/
26 September 2025
[...] "humanoid robots will need a sense of touch, and a level of touch sensing that no one has yet built in the lab in order for them to do tasks like the one above which is of the same order of difficulty that millions of workers do all day everyday" [...]
[Bold by Roberto Calandra]
(~1890)
(~1990)
(~2025)
+ Applications
+ Community
[Hillis, W. D. A High-Resolution Imaging Touch Sensor The International Journal of Robotics Research, 1982, 1, 33-44 ]
[Tanie, K.; Komoriya, K.; Kaneko, M.; Tachi, S. & Fujikawa, A. A high resollution tactile sensor Proc. of 4th Int. Conf. on Robot Vision and Sensory Controls, 1984, 251, 260]
[Begej, S. Planar and finger-shaped optical tactile sensors for robotic applications IEEE Journal on Robotics and Automation, 1988, 4, 472-484]
[Kamiyama, K.; Kajimoto, H.; Kawakami, N. & Tachi, S. Evaluation of a vision-based tactile sensor IEEE International Conference on Robotics and Automation (ICRA), 2004, 2, 1542-1547 ]
[Johnson, M. K. & Adelson, E. H. Retrographic sensing for the measurement of surface texture and shape Computer Vision and Pattern Recognition (CVPR), 2009, 1070-1077]
[Abad, A. C. & Ranasinghe, A. Visuotactile Sensors With Emphasis on GelSight Sensor: A Review IEEE Sensors Journal, 2020, 20, 7628-7638]
Image from:
[Yuan, W.; Dong, S. & Adelson, E. H. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force Sensors, Multidisciplinary Digital Publishing Institute, 2017]
Lambeta, M.; Chou, P.-W.; Tian, S.; Yang, B.; Maloon, B.; Most, V. R.; Stroud, D.; Santos, R.; Byagowi, A.; Kammerer, G.; Jayaraman, D. & Calandra, R.
DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation
IEEE Robotics and Automation Letters (RA-L), 2020, 5, 3838-3845
Lambeta, M.; Chou, P.-W.; Tian, S.; Yang, B.; Maloon, B.; Most, V. R.; Stroud, D.; Santos, R.; Byagowi, A.; Kammerer, G.; Jayaraman, D. & Calandra, R.
DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor with Application to In-Hand Manipulation
IEEE Robotics and Automation Letters (RA-L), 2020, 5, 3838-3845
BioTac
DIGIT
~15,000 $
Cost
~15 $*
Resolution
29
taxels
307,200
taxels
Mounted on multi-finger hands
Open-source
1000x
Higher resolution
1000x
Cheaper
* component cost for 1000 units, not including labor
Suresh, S.; Qi, H.; Wu, T.; Fan, T.; Pineda, L.; Lambeta, M.; Malik, J.; Kalakrishnan, M.; Calandra, R.; Kaess, M.; Ortiz, J. & Mukadam, M.
Neural feels with neural fields: Visuo-tactile perception for in-hand manipulation
Science Robotics 2024 https://arxiv.org/abs/2312.13469
Funk, N.; Helmut, E.; Chalvatzaki, G.; Calandra, R. & Peters, J.
Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation
IEEE Transactions on Robotics (T-RO), 2024 https://arxiv.org/abs/2312.01236
12%
1.7% over
entire
trajectory
Funk, N.; Helmut, E.; Chalvatzaki, G.; Calandra, R. & Peters, J.
Evetac: An Event-based Optical Tactile Sensor for Robotic Manipulation
IEEE Transactions on Robotics (T-RO), 2024 https://arxiv.org/abs/2312.01236
Di, J.; Dugonjic, Z.; Fu, W.; Wu, T.; Mercado, R.; Sawyer, K.; Most, V. R.; Kammerer, G.; Speidel, S.; Fan, R. E.; Sonn, G.; Cutkosky, M. R.; Lambeta, M. & Calandra, R.
Using Fiber Optic Bundles to Miniaturize Vision-Based Tactile Sensors
IEEE Transactions on Robotics (T-RO), 2024 https://arxiv.org/abs/2403.05500
Di, J.; Dugonjic, Z.; Fu, W.; Wu, T.; Mercado, R.; Sawyer, K.; Most, V. R.; Kammerer, G.; Speidel, S.; Fan, R. E.; Sonn, G.; Cutkosky, M. R.; Lambeta, M. & Calandra, R.
Using Fiber Optic Bundles to Miniaturize Vision-Based Tactile Sensors
IEEE Transactions on Robotics (T-RO), 2024 https://arxiv.org/abs/2403.05500
Cancer
No Cancer
Lambeta M.; Wu T.; Sengül A.; Most V. R.; Black N.; Sawyer K.; Mercado R.; Qi H.; Sohn A.; Taylor B.; Tydingco N.; Kammerer G.; Stroud D.; Khatha J.; Jenkins K.; Most K.; Stein N.; Chavira R.; Craven-Bartle T.; Sanchez E.; Ding Y.; Malik J. & Calandra R.
Digitizing Touch with an Artificial Multimodal Fingertip
Arxiv Preprint. 2024 https://arxiv.org/abs/2411.02479
~100x
better than humans
Lambeta M.; Wu T.; Sengül A.; Most V. R.; Black N.; Sawyer K.; Mercado R.; Qi H.; Sohn A.; Taylor B.; Tydingco N.; Kammerer G.; Stroud D.; Khatha J.; Jenkins K.; Most K.; Stein N.; Chavira R.; Craven-Bartle T.; Sanchez E.; Ding Y.; Malik J. & Calandra R.
Digitizing Touch with an Artificial Multimodal Fingertip
Arxiv Preprint. 2024 https://arxiv.org/abs/2411.02479
Lambeta M.; Wu T.; Sengül A.; Most V. R.; Black N.; Sawyer K.; Mercado R.; Qi H.; Sohn A.; Taylor B.; Tydingco N.; Kammerer G.; Stroud D.; Khatha J.; Jenkins K.; Most K.; Stein N.; Chavira R.; Craven-Bartle T.; Sanchez E.; Ding Y.; Malik J. & Calandra R.
Digitizing Touch with an Artificial Multimodal Fingertip
Arxiv Preprint. 2024 https://arxiv.org/abs/2411.02479
Many open questions:
Very limited literature about computational processing of touch sensing
It will take decades of research to answer all of these questions!
(and reach the same maturity of community working on other sensing modalities)
Goal: Create the equivalent of OpenCV for Touch
Lambeta, M.; Xu, H.; Xu, J.; Chou, P.-W.; Wang, S.; Darrell, T. & Calandra, R.
PyTouch: A Machine Learning Library for Touch Processing
IEEE International Conference on Robotics and Automation (ICRA), 2021, Online: https://arxiv.org/abs/2105.12791
Lambeta, M.; Xu, H.; Xu, J.; Chou, P.-W.; Wang, S.; Darrell, T. & Calandra, R.
PyTouch: A Machine Learning Library for Touch Processing
IEEE International Conference on Robotics and Automation (ICRA), 2021
Kerr, J.; Huang, H.; Wilcox, A.; Hoque, R.; Ichnowski, J.; Calandra, R. & Goldberg, K.
Self-Supervised Visuo-Tactile Pretraining to Locate and Follow Garment Features
Robotics: Science and Systems (RSS) 2023, Online: https://arxiv.org/pdf/2209.13042
Fu, L.; Datta, G.; Huang, H.; Panitch, W. C.-H.; Drake, J.; Ortiz, J.; Mukadam, M.; Lambeta, M.; Calandra, R. & Goldberg, K.
A Touch, Vision, and Language Dataset for Multimodal Alignment
ICML 2024 https://arxiv.org/abs/2402.13232
Robotics
Metaverse
(AR/VR)
E-commerce
Medical
Calandra, R.; Owens, A.; Jayaraman, D.; Yuan, W.; Lin, J.; Malik, J.; Adelson, E. H. & Levine, S.
More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch
IEEE Robotics and Automation Letters (RA-L), 2018, 3, 3300-3307
Trained with 6450 grasps from over 60 training objects
83.8% grasp success on 22 unseen objects
(using only vision yields 56.6% success rate)
Nakahara, K. & Calandra, R.
Learning Gentle Grasping Using Vision, Sound, and Touch
IROS, 2025
Nakahara, K. & Calandra, R.
Learning Gentle Grasping Using Vision, Sound, and Touch
IROS, 2025
N. Funk; C. Chen, T. Schneider, G. Chalvatzaki, R. Calandra, and J. Peters
On the Importance of Tactile Sensing for Imitation Learning: A Case Study on Robotic Match Lighting
Arxiv Preprint. 2025 https://arxiv.org/abs/2504.13618.
From 20% (vision only) to 80% (vision+touch) success rate
Qi, Haozhi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik.
General In-Hand Object Rotation with Vision and Touch.
Conference on Robot Learning (CORL). 2023 https://arxiv.org/abs/2309.09979
Qi, Haozhi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik.
General In-Hand Object Rotation with Vision and Touch.
Conference on Robot Learning (CORL). 2023 https://arxiv.org/abs/2309.09979
Fritsche, L.; Unverzagt, F.; Peters, J. & Calandra, R.
First-Person Tele-Operation of a Humanoid Robot
IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS), 2015
Supported by
Thank you!
Wang, S.; Lambeta, M.; Chou, L. & Calandra, R.
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors
IEEE Robotics and Automation Letters (RA-L), 2022, 7, 3930-3937, Online: https://arxiv.org/abs/2012.08456
By Roberto Calandra
Touch is a crucial sensor modality in both humans and robots. Recent advances in tactile sensing hardware have resulted -- for the first time -- in the availability of mass-produced, high-resolution, inexpensive, and reliable tactile sensors. In this talk, I will argue for the importance of creating a new computational field of "Touch processing" dedicated to the processing and understanding of touch, similarly to what computer vision is for vision. This new field will present significant challenges both in terms of research and engineering. Finally, I will present some applications of touch in robotics and discuss other future applications.
Full Professor at TU Dresden. Head of the LASR Lab. Working in AI, Robotics and Touch Sensing.