Advancements in Fusion Energy: tritium fuel cycle and FESTIM's role in hydrogen transport simulation

Remi Delaporte-Mathurin and FESTIM contributors

Nuclear Fusion 101

+

+

Deuterium

Tritium

+

+

Helium

neutron

Fusion

What's the catch?

  • The nuclei need to have enough energy to overcome the Coulomb barrier
     
  • Fusion fuel needs to reach ~100 million K (plasma)
     
  • How to contain a plasma at these temperatures?

Magnetic confinement

Jason Ginsberg

JET

  • Joint European Torus
     
  • UK Atomic Energy Authority (UKAEA)
     
  • \( Q_\mathrm{plasma} = 0.7\) (1997)
     
  • No longer operating

ITER

  • International collaboration
     
  • Located in Southern France
     
  • \( Q_\mathrm{plasma} = 10\) (objective)
     
  • First plasma in 2034

SPARC

  • Private company Commonwealth Fusion Systems
     
  • Spin off of MIT
     
  • \( Q_\mathrm{plasma} = 5-10\) (objective)
     
  • First plasma in 2026

ARC

  • Private company Commonwealth Fusion Systems
     
  • Power plant (electricity production) ~ 400 MW
     
  • Will be sited in Virginia

Half-life: 12 years

\mathrm{T} \rightarrow \mathrm{He} + \mathrm{e}^-

The tritium issue

Tritium is

  • rare
  • expensive
  • hazardous
\mathrm{n} + ^6\mathrm{Li} \rightarrow \mathrm{T} + \mathrm{He} + 4.8 \ \mathrm{MeV}
\mathrm{n} + ^7\mathrm{Li} \rightarrow \mathrm{T} + \mathrm{He} + \mathrm{n} - 2.5 \ \mathrm{MeV}
\mathrm{TBR} = \mathrm{\frac{tritium \ produced}{tritium \ consumed}} > 1

❓How ❓

Lithium is used to breed tritium

\mathrm{D} + \mathrm{T} \rightarrow \mathrm{He} + \mathrm{n}
\mathrm{D} + \mathrm{T} \rightarrow \mathrm{He} + \mathrm{n}

Magnet

Breeding blanket

\mathrm{n} + \mathrm{Li} \rightarrow \mathrm{T} + \mathrm{He}

The breeding blanket

Plasma

The breeding blanket is only one component of the fuel cycle

We need to study the behaviour of tritium in materials

Hydrogen transport in metals

Governing equations

\varphi_\mathrm{diffusion} = - D \ \left( \nabla c + \frac{Q\ c}{R \ T^2} \ \nabla{T} - \frac{c \ V_H}{R \ T} \nabla \sigma \right)

\( \varphi_\mathrm{diffusion} \): diffusion flux

\( D \): diffusion coefficient

\( c \): diffusive hydrogen concentration

\( S\): source term

Soret effect (or thermophoresis)

Stress assisted diffusion

H

  • vacancy
  • grain boundary
  • impurity
  • chemical reaction
  • ...

Governing equations

Trapping at defects

\mathrm{H} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{H}]_\mathrm{trap}

0D

\frac{\partial c_\mathrm{t}}{\partial t} = -\frac{\partial c_\mathrm{m}}{\partial t} = k \ c_\mathrm{m} \ n_\mathrm{free \ trap} - p c_\mathrm{t}
c_\mathrm{t}

Since \(n_\mathrm{trap} = n_\mathrm{free \ trap} + c_\mathrm{t}  \)

c_\mathrm{m}
n_\mathrm{free \ trap}

Governing equations

\mathrm{H} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{H}]_\mathrm{trap}
c_\mathrm{t}
c_\mathrm{m}
n_\mathrm{free \ trap}

0D

\frac{\partial c_\mathrm{t}}{\partial t} = -\frac{\partial c_\mathrm{m}}{\partial t} = k \ c_\mathrm{m} \ (n_\mathrm{trap} - c_\mathrm{t}) - p c_\mathrm{t}

Total concentration of traps

Governing equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot \varphi_\mathrm{diffusion} + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t}) - p_i c_\mathrm{t}

McNabb & Foster model

Challenges

  • Number of degrees of freedom
  • Interface discontinuities

Governing equations

- D_1 \nabla c_1 = - D_2 \nabla c_2
\left( \frac{c_1}{K_{1}} \right)^2 =\left( \frac{c_2}{K_{2}} \right)^{\{1,2\} }

Recombination

Dissociation

Absorption

Trapping 

Detrapping

Diffusion

Most processes are thermally activated

FESTIM: a FEniCS-based tool for hydrogen transport simulation

User inputs

  • Material properties
  • Trap properties
  • Geometry
  • Boundary conditions
  • Initial conditions
  •            ...
T

FESTIM

Outputs

  • H concentration fields \(c(x,t)\)
  • Temperature field \(T(x,t)\)
  • surface fluxes
  • inventories
  • average concentration
  •              ...

Heat transfer model

Hydrogen transport model(s)

📈5 years of development

📑14+ publications

🗣️130+ citations

🧑‍💻23+ contributors

🏛️27+ institutions using the code

🧑‍💻80+ Slack members

⭐~100 stars on GitHub

🧑‍💻4 user workshops

FESTIM in numbers

✅100% open-source

Source code: github.com/festim-dev/FESTIM

Tutorials: github.com/festim-dev/FESTIM-workshop

Documentation: festim.readthedocs.io

FESTIM is verified & validated

  • Validated against TDS, permeation experiments...
     
  • Verified against analytical solutions in many different problems
     
  • New V&V online book

festim-vv-report.readthedocs.io

 

  • 19 V&V cases in total (more to come)

Remi Delaporte-Mathurin and Jair Santana, FESTIM V&V Book, 2024, https://dspace.mit.edu/handle/1721.1/156690.

FESTIM from mesoscale to reactor scale

Gas driven permeation

J_\mathrm{left} = K_d \ P - K_r \ c^2
J_\mathrm{right} = - K_r \ c^2

Surface limited regime

Bulk limited regime

Transition to bulk limited as the permeation number \( W \) increases

High H pressure

Low H pressure

Permeation flux

\( c = K_H \ P_\mathrm{up} \)

\( c = 0 \)

Permeation through the crucible wall

FLiBe

2D permeation through molten salts

\mathrm{flux} = 2 \pi \ \int_0^R r \ D \nabla c \ \cdot \mathbf{n} \ dr

HYPERION permeation rig

Permeation barriers

No barrier

with barrier

Permeation barrier

Substrate

High H pressure

Low H pressure

Permeation flux

Ongoing tritium permeation barriers development project at MIT

Conservation of chemical potential

\frac{c^-}{K_S^-} = \frac{c^+}{K_S^+}

TDS analysis: neutron damage

\frac{d n}{dt} = \Phi \ K \ (1 - \frac{n}{n_\mathrm{max}}) - A \ n
  • New proposed model for neutron-induced trap creation
     
  • Parameterised on TDS data (self-damaged W)

TDS analysis: neutron damage

  • Model was used to simulate inventory evolution in PFCs
     
  • Neglecting neutron traps could potentially underestimate inventories by several orders of magnitude after 1 FPY
     
  • Need similar studies for structural materials!

TDS analysis: codeposits

  • Simulation of W codeposited layers
     
  • Influence of partial pressure
     
  • 10 different traps!

Kinetic surface model

Kinetic surface model

  • D in damaged W (S. Markelj JNM 2016)
     
  • Comparison with NRA (Nuclear Reaction Analysis) profiles

Kinetic surface model

  • H in oxidised W (A. Dunand et al 2022 Nucl. Fusion)
     
  • Comparison with TDS spectra

Kinetic surface model

  • H in Ti (Hirooka et al 1981 JNM)
     
  • Validation at 5 temperatures

H content (H/Ti)

Component scale modelling & multiphysics

Influence of ELMs on retention

  • 1D model of a ITER monoblock
     
  • Transient heat transfer simulation
     
  • Varying surface heat flux

Metal Foil Pumps for DIR

  • H is implanted in the first \( 10 \ \mathrm{nm} \)
  • Super-permeation regime is attained at high recombination energy (upstream surface)
  • Source code

Benedikt & Day, (2017) Fusion Engineering and Design

Trtitium retention studies

  • Delaporte-Mathurin et al 2024 International Journal of Hydrogen Energy 63 786–802
  • Delaporte-Mathurin et al 2024 Nucl. Fusion 64 026003
  • ITER plasma facing components
     
  • Transient estimation of tritium retention
     
  • Tritium is trapped in colder regions

Retention (T/m3)

Detritiation studies

Tritium Breeding Blanket

  • DEMO WCLL
  • Complex 3D geometry
  • Coupled to fluid dynamics
  • Tritium generation in the LiPb volume (computed from neutronics)

Tritium extraction system

  • Permeation Against Vacuum
     
  • Complex 3D geometry
     
  • Coupled with fluid dynamics
     
  • Tritium extraction from permeable membranes

① neutrons are generated

 

② tritium is created from nuclear reactions

 

③ tritium is transported in the salt

 

④ tritium is released into the gas phase

 

⑤ tritium is collected and counted

MIT tritium breeding experiment

MIT tritium breeding experiment

Velocity

Temperature

Tritium concentration

For more details on experiment: Delaporte-Mathurin et al, Advancing Tritium Self-Sufficiency in Fusion Power Plants: Insights from the BABY Experiment  (under review in Nucl. Fusion)

Towards FESTIM2

  • Rewrite of FESTIM with FEniCSx
  • Improved performances
  • New physics and features

Spherical cavity trapping

see Zibrov and Schmid, NME, 2024

for complete description

  • Implementation in FESTIM of the spherical cavity trapping model developed by Zibrov and Schmid
  • Custom trapping equations
  • Smooth implementation in FESTIM

Anisotropy

  • Anisotropic materials can be simulated with very few modifications
  • Composites
  • Anisotropic microstructures
D = \begin{bmatrix} D_{xx} & 0\\ 0 & D_{yy} \end{bmatrix}
\mathrm{H} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{H}]_\mathrm{trap}
\mathrm{D} + [\ \ \ ]_\mathrm{trap} \ \substack{p \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k} \ [\mathrm{D}]_\mathrm{trap}
\mathrm{D} + [\mathrm{H}]_\mathrm{trap} \ \substack{k_\mathrm{swap} \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1.2em] k_\mathrm{swap}} \ [\mathrm{D}]_\mathrm{trap} + \mathrm{H}

same underlying equations!

Can be represented by festim.Reaction

Isotope swapping

Trapping reactions

Swapping reaction

Isotope swapping

my_model.species = [
    mobile_H,
    mobile_D,
    trapped_H,
    trapped_D,
]

my_model.reactions = [
    F.Reaction(
        k_0=k_0,
        E_k=0.39,
        p_0=1e13,
        E_p=1.2,
        reactant1=mobile_H,
        reactant2=empty_trap,
        product=trapped_H,
        volume=my_subdomain,
    ),
    F.Reaction(
        k_0=k_0,
        E_k=0.39,
        p_0=1e13,
        E_p=1.2,
        reactant1=mobile_D,
        reactant2=empty_trap,
        product=trapped_D,
        volume=my_subdomain,
    ),
    F.Reaction(
        k_0=k_0,
        E_k=0.1,
        p_0=k_0,
        E_p=0.1,
        reactant1=mobile_H,
        reactant2=trapped_D,
        product=[mobile_D, trapped_H],
        volume=my_subdomain,
    ),
]

Usual trapping reactions

Swapping reaction

4 species are defined

Multi-isotope transport and multi-level trapping

  • 2 isotopes, 1 trap (2 levels)
  • 7 different species
  • 6 reactions
\mathrm{H} + [\ \ \ ] \ \substack{p_1 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_1} \ [\mathrm{H}_1\mathrm{D}_0]
\mathrm{H} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_2 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_2} \ [\mathrm{H}_2\mathrm{D}_0]
\mathrm{D} + [\ \ \ ] \ \substack{p_3 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_3} \ [\mathrm{H}_0\mathrm{D}_1]
\mathrm{D} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_4 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_4} \ [\mathrm{H}_0\mathrm{D}_2]
\mathrm{H} + [\mathrm{H}_0\mathrm{D}_1] \ \substack{p_5 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_5} \ [\mathrm{H}_1\mathrm{D}_1]
\mathrm{D} + [\mathrm{H}_1\mathrm{D}_0] \ \substack{p_6 \\[-1em] \longleftarrow\\[-1em] \longrightarrow \\[-1em] k_6} \ [\mathrm{H}_1\mathrm{D}_1]

✅Mixed domain can streamline multiphysics coupling

 

❌Some methods do not work for dissimilar materials (Henry vs Sieverts)

FESTIM 2 is much faster

3-30x

faster

HISP project: coupling FESTIM to plasma codes

RISP pulse

ITER FW divided in 60 bins

Data from DINA

Goal: find the best strategy for minimising ITER T inventory

HISP project: coupling FESTIM to plasma codes

  • Multi isotopes
     
  • Parametrisation for W, B, SS
     
  • Testing different scenarios for detritiation in ITER
     
  • Flexible enough to be reactor-and plasma code-agnostic
     
  • Open-source development
    github.com/kaelyndunnell/hisp

HISP project: coupling FESTIM to plasma codes

10 DT FP pulses

ICWC + RISP

GDC

Simulation time:
~ 60 s per bin (~ hour full reactor)

Next steps

Advancements in Fusion Energy: tritium fuel cycle and FESTIM's role in hydrogen transport simulation (Dassault Systems Seminar)

By Remi Delaporte-Mathurin

Advancements in Fusion Energy: tritium fuel cycle and FESTIM's role in hydrogen transport simulation (Dassault Systems Seminar)

  • 136