Modelling hydrogen in materials:

component to reactor scale

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot \left(D\nabla c_\mathrm{m} \right) + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_i c_\mathrm{t,i}

Reminder: McNabb & Foster model

Let's solve the system analytically

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot \left(D\nabla c_\mathrm{m} \right) + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_i c_\mathrm{t,i}

Let's solve the system analytically

Simplification #1:    1D domain \(L\)

\frac{\partial c_\mathrm{m}}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial}{\partial x} c_\mathrm{m} \right) + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_i c_\mathrm{t,i}

Let's solve the system analytically

Simplification #1:    1D domain \(L\)

Simplification #2:    1 material

\frac{\partial c_\mathrm{m}}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial}{\partial x} c_\mathrm{m} \right) + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_i c_\mathrm{t,i}

Let's solve the system analytically

D, S, k, p, n = \mathrm{constants}

Simplification #1:    1D domain \(L=1\)

Simplification #2:    1 material

Simplification #3:

\frac{\partial c_\mathrm{m}}{\partial t} = D \frac{\partial^2 c_\mathrm{m}}{\partial x^2} + S - \sum \frac{\partial c_\mathrm{t,i}}{\partial t}
\frac{\partial c_\mathrm{t, i}}{\partial t} = k_\mathrm{i} \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_\mathrm{i} c_\mathrm{t,i}

Let's solve the system analytically

D, S, k, p, n = \mathrm{constants}

Simplification #1:    1D domain \(L\)

Simplification #2:    1 material

Simplification #3:

Simplification #4: Steady state 

0 = k_\mathrm{i} \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_\mathrm{i} c_\mathrm{t,i}
0 = D \frac{\partial^2 c_\mathrm{m}}{\partial x^2} + S

💡At steady state, the mobile concentration is independent of trapping

Let's solve the system analytically

0 = k_\mathrm{i} \ c_\mathrm{m} \ (n_\mathrm{trap,i} - c_\mathrm{t,i}) - p_\mathrm{i} c_\mathrm{t,i}
0 = D \frac{\partial^2 c_\mathrm{m}}{\partial x^2} + S
c_\mathrm{t,i} = \frac{n_\mathrm{trap,i}}{1+ \frac{p_\mathrm{i}}{k_\mathrm{i} \ c_\mathrm{m}}}

Oriani's model

Let's solve the system analytically

0 = D \frac{\partial^2 c_\mathrm{m}}{\partial x^2} + S
c_\mathrm{t,i} = \frac{n_\mathrm{trap,i}}{1+ \frac{p_\mathrm{i}}{k_\mathrm{i} \ c_\mathrm{m}}}
\frac{\partial^2 c_\mathrm{m}}{\partial x^2} = \frac{-S}{D}
\frac{\partial c_\mathrm{m}}{\partial x} = \frac{-S}{D} x + K_1
c_\mathrm{m} = \frac{-S}{2\ D} x^2 + K_1 \ x + K_2

2 unknowns =

2 equations =

2 boundary conditions

Let's solve the system analytically

c_\mathrm{t,i} = \frac{n_\mathrm{trap,i}}{1+ \frac{p_\mathrm{i}}{k_\mathrm{i} \ c_\mathrm{m}}}
c_\mathrm{m} = \frac{-S}{2\ D} x^2 + K_1 \ x + K_2
c_\mathrm{m}(x=0) = 1 \\ c_\mathrm{m}(x=1) = 0

Let's solve the system analytically

c_\mathrm{t,i} = \frac{n_\mathrm{trap,i}}{1+ \frac{p_\mathrm{i}}{k_\mathrm{i} \ c_\mathrm{m}}}
c_\mathrm{m} = \frac{-S}{2\ D} x^2 + K_1 \ x + K_2
K_2 = 1 \\ \frac{-S}{2\ D} + K_1 + K_2 = 0
K_2 = 1 \\ K_1= \frac{-S}{2\ D} - 1

Let's solve the system analytically

c_\mathrm{t,i} = \frac{n_\mathrm{trap,i}}{1+ \frac{p_\mathrm{i}}{k_\mathrm{i} \ c_\mathrm{m}}}
c_\mathrm{m} = \frac{-S}{2\ D} x^2 - (\frac{S}{2\ D} + 1) \ x + 1
  • Steady state
  • 1 material
  • Homogeneous temperature
  • 1D

We can solve it numerically

Component modelling

Experimental analysis

3 main numerical methods

Finite Difference Method (FDM)

Finite Element Method (FEM)

Finite Volume Method (FVM)

Let's not bother

\frac{\partial c }{\partial x} \approx \frac{c(x=x_{i+1}) - c(x=x_{i})}{x_{i+1} - x_{i}}

3 main numerical methods

\frac{\partial c }{\partial x} \approx \frac{c(x=x_{i+1}) - c(x=x_{i})}{x_{i+1} - x_{i}}

2

Finite Difference Method (FDM)

Finite Element Method (FEM)

Different ways of discretising space

3 main numerical methods

Finite Difference Method (FDM)

Finite Element Method (FEM)

2

✅Easy to implement in 1D

❌Hard to extend to 2D/3D

✅Better performances for hyperbolic problems

✅Can be applied to complex geometries

✅Better performances for parabolic problems

❌Complex implementation from scratch

We don't care

There are a handful of H transport codes

TMAP7

TMAP8

MHIMS

FESTIM

COMSOL

Abaqus

There are a handful of H transport codes

TMAP7

TMAP8

MHIMS

FESTIM

COMSOL

Abaqus

1D

1D/2D/3D

TESSIM

There are a handful of H transport codes

TMAP7

MHIMS

FDM

FEM

TESSIM

TMAP8

FESTIM

COMSOL

Abaqus

There are a handful of H transport codes

TMAP7

TMAP8

MHIMS

FESTIM

COMSOL

Abaqus

Proprietary

Open-source

Closed-source

TESSIM

COMSOL

  • ARC's breeding blanket
  • Source of tritium from neutronics calculations
  • Heat transfer + Fluid dynamics + H transport
  • Steady state
  • Computation time 8h

TMAP7 and TESSIM

  • W on Eurofer
  • 1D
  • Agreement between TMAP and TESSIM

FESTIM

Simulation of a WCLL breeding blanket from CAD files

1) Mesh generation

2) Heat transfer simulation

3) 2D slice

FESTIM

Simulation of a WCLL breeding blanket from CAD files

1) Mesh generation

2) Heat transfer simulation

3) 2D slice

4) Fluid dynamics

5) H transport

How to handle large models

x 10,000

💡Build a surrogate model!

What is the inventory of the whole divertor?

Large problem

A monoblock surrogate model

At

t = 10^7 \, \mathrm{s}
\mathrm{inventory} = \int c \, dV
T_\mathrm{surface} = 700 \, \mathrm{K}
c_\mathrm{m} = 10^{21} \, \mathrm{H\,m^{-3}}
c_\mathrm{m} = 10^{20} \, \mathrm{H\,m^{-3}}
T_\mathrm{surface} = 1000 \, \mathrm{K}

A monoblock surrogate model

+

+

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

A monoblock surrogate model

+

+

+

+

+

+

+

+

+

+

+

+

+

+

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

A monoblock surrogate model

\mathrm{inventory} = \int c \, dV

At

t = 10^7 \, \mathrm{s}

Gaussian Process Regression (GPR)

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

SOLPS runs: Pitts et al NME (2020)

The inventory is estimated from the surrogate model

Divertor H inventory at \( t = 10^7 \, \mathrm{s}\) is \( \approx \) 14 g

Integrate

How to handle VERY large models?

Fuel Cycle Modelling

Meschini et al (submitted)

The inventory is computed in each component

BB

TES

Storage

\tau_\mathrm{BB}
\tau_\mathrm{TES}

Plasma

\frac{dI_\mathrm{BB}}{dt}=\dot{N} \cdot \mathrm{TBR} - \frac{I_\mathrm{BB}}{\tau_\mathrm{BB}} + f_{\mathrm{TES \rightarrow BB}}\frac{I_\mathrm{TES}}{\tau_\mathrm{TES}}
\frac{dI_\mathrm{TES}}{dt}= - \frac{I_\mathrm{TES}}{\tau_\mathrm{TES}} + \frac{I_\mathrm{BB}}{\tau_\mathrm{BB}}
\frac{dI_\mathrm{storage}}{dt}= - \dot{N} + f_{\mathrm{TES \rightarrow Storage}}\frac{I_\mathrm{TES}}{\tau_\mathrm{TES}}

\( I \): tritium inventory

\( \tau \): residency time

\(f\): flow fraction

The inventory is computed in each component

BB

TES

Storage

\tau_\mathrm{BB}
\tau_\mathrm{TES}

Plasma

The inventory is computed in each component

BB

TES

Storage

\tau_\mathrm{BB}
\tau_\mathrm{TES}

Plasma

Storage inventory is almost zero

The inventory is computed in each component

BB

TES

Storage

\tau_\mathrm{BB}
\tau_\mathrm{TES}

Plasma

T accumulates in storage again

The inventory is computed in each component

BB

TES

Storage

\tau_\mathrm{BB}
\tau_\mathrm{TES}

Plasma

Higher startup inventory

The inventory is computed in each component

\frac{dI_i}{dt}=\sum_{j\neq i}\left(f_{j\rightarrow i}\frac{I_j}{\tau_j}\right)-(1+\epsilon_i)\left(\frac{I_i}{\tau_i}\right)-\lambda I_i + S_i

T coming from other components

T going to other components

+ losses to environment

Radioactive decay

Production

DFT

Let's wrap everything up

Y. Ferro et al 2023 Nucl. Fusion 63 036017

Length scale

Time scale

MD

Let's wrap everything up

Length scale

Time scale

DFT

potentials

Let's wrap everything up

Component scale modelling

Length scale

Time scale

MD

DFT

D, S, other coeffs.

Let's wrap everything up

Length scale

Time scale

MD

DFT

Component scale modelling

Fuel cycle modelling

Residency times, fluxes, ...

Let's wrap everything up

Length scale

Time scale

MD

DFT

Component scale modelling

Fuel cycle modelling

Abstraction

Modelling hydrogen in materials: component to reactor scale

By Remi Delaporte-Mathurin

Modelling hydrogen in materials: component to reactor scale

  • 212