Hydrogen transport in tokamaks

Estimation of the ITER divertor tritium inventory and influence of helium exposure

Rémi Delaporte-Mathurin

17-10-2022

“I’d put my money on the Sun. What a source of power!”

Thomas Edison, 1931

Every second:

→ Fuses 500 Mt of hydrogen

→ Produces a million times the world’s energy consumption

On Earth

Deuterium

Tritium

Neutron

Helium

✔️No CO2 emission

✔️No long lived radioactive waste

✔️Inherently safe

✔️Abundant fuel

ITER

Plasma: mixture of Hydrogen (D-T) and Helium

Particle bombardment

Divertor

Why should we care?

T is rare

T is expensive

€£$

Material embrittlement

 Gao et al, Nucl Fusion (2019)

What's the T inventory in the ITER divertor?

Does it remain within safety limits?

What's the influence of Helium?

T is radioactive

Why should we care?

T is rare

T is expensive

£

Material embrittlement

T is radioactive

 Gao et al, Nucl Fusion (2019)

What's the T inventory in the ITER divertor?

Does it remain within safety limits?

What's the influence of Helium?

Material embrittlement

 Gao et al, Nucl Fusion (2019)

Fuel recycling

£

W

Cu

CuCrZr

Monoblocks

W

Cu

CuCrZr

Monoblock

Top surface exposed to extreme fluxes (particle, heat)

Pressurised water convection

14 mm

Outline

  1. Assessment of the tritium inventory in the ITER divertor
    1. Models & tools
    2. Monoblocks
    3. Divertor
  2. Influence of helium impurities
    1. Helium bubble model
    2. Interactions with hydrogen transport

Models and tools

Hydrogen transport in metals

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m})

Fick's law

H transport equations

\textcolor{grey}{\frac{\partial \textcolor{black}{c_\mathrm{m}}}{\partial t} = \nabla \cdot (D \nabla \textcolor{black}{c_\mathrm{m}})}
c_\mathrm{m}

concentration of mobile hydrogen

Fick's law

\mathrm{(m^{-3})}

H transport equations

\textcolor{grey}{\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (\textcolor{black}{D} \nabla c_\mathrm{m})}
c_\mathrm{m}

concentration of mobile hydrogen

D

diffusion coefficient

\mathrm{(m^{2} \, s^{-1})}

Fick's law

\mathrm{(m^{-3})}

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\frac{\partial c_{\mathrm{t}, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_i - c_{\mathrm{t}, i}) - p_i \ c_{\mathrm{t}, i}

McNabb & Foster

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\textcolor{grey}{\frac{\partial \textcolor{black}{c_{\mathrm{t}, i}}}{\partial t} = k_i \ c_\mathrm{m} \ (n_i - \textcolor{black}{c_{\mathrm{t}, i}}) - p_i \ \textcolor{black}{c_{\mathrm{t}, i}}}
c_{\mathrm{t}, i}

concentration of trapped hydrogen

McNabb & Foster

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\textcolor{grey}{\frac{\partial c_{\mathrm{t}, i}}{\partial t} = k_i \ c_\mathrm{m} \ (\textcolor{black}{n_i} - c_{\mathrm{t}, i}) - p_i \ c_{\mathrm{t}, i}}
n_i

trap concentration

c_{\mathrm{t}, i}

concentration of trapped hydrogen

McNabb & Foster

\mathrm{(m^{-3})}

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\textcolor{grey}{\frac{\partial c_{\mathrm{t}, i}}{\partial t} = \textcolor{black}{k_i} \ c_\mathrm{m} \ (n_i - c_{\mathrm{t}, i}) - \textcolor{black}{p_i} \ c_{\mathrm{t}, i}}
n_i

trap concentration

c_{\mathrm{t}, i}

concentration of trapped hydrogen

McNabb & Foster

k_i

trapping rate

p_i

detrapping rate

\mathrm{(m^{-3})}
\mathrm{(m^{3} \ s^{-1})}
\mathrm{(s^{-1})}

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\textcolor{grey}{\frac{\partial c_{\mathrm{t}, i}}{\partial t} = \textcolor{grey}{k_i} \ c_\mathrm{m} \ (n_i - c_{\mathrm{t}, i}) - \textcolor{grey}{p_i} \ c_{\mathrm{t}, i}}

Conservation of chemical potential at interfaces

\left( \frac{c_\mathrm{m}}{S}\right)^{-} = \left(\frac{c_\mathrm{m}}{S}\right)^{+}

Material 1

Material 2

\( c_\mathrm{m} \)

\( S\): solubility of H in the material

\mathrm{(m^{-3} \ Pa^{-1/2} \quad or \quad m^{-3} \ Pa^{-1})}

H transport equations

\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \sum_i \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\frac{\partial c_{\mathrm{t}, i}}{\partial t} = k_i \ c_\mathrm{m} \ (n_i - c_{\mathrm{t}, i}) - p_i \ c_{\mathrm{t}, i}

\( \textcolor{red}{T} \) : Temperature (K)

Thermally activated coefficients

\( D = D_0 \exp(-E_D / k_B \textcolor{red}{T}) \)

\( k_i = k_0 \exp(-E_k / k_B \textcolor{red}{T}) \)

\( p_i = p_0 \exp(-E_p / k_B \textcolor{red}{T}) \)

\left( \frac{c_\mathrm{m}}{S}\right)^{-} = \left(\frac{c_\mathrm{m}}{S}\right)^{+}

1800 °C

300 °C

20 MW/m2

\(k_B \): Boltzmann constant

We also need the heat equation

\rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T)
\lambda

thermal conductivity

(\mathrm{W} \, \mathrm{m}^{-1} \, \mathrm{K}^{-1})
C_p

heat capacity

(\mathrm{J} \, \mathrm{kg}^{-1} \, \mathrm{K}^{-1})

density

(\mathrm{kg}\, \mathrm{m}^{-3})
\rho

Wishlist

  • Multi-materials
  • Multi-dimensional
  • Hydrogen transport
  • Heat transfer
1D H transport 2D/3D Multi-material Heat transfer
TMAP7
HIIPC
CRDS
MHIMS
TESSIM

Wishlist

  • Multi-materials
  • Multi-dimensional
  • Hydrogen transport
  • Heat transfer
1D H transport 2D/3D Multi-material Heat transfer
TMAP7
HIIPC
CRDS
MHIMS
TESSIM
FESTIM

FESTIM implements these models

\rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T)
\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \frac{\partial c_{\mathrm{t}, i}}{\partial t}
\frac{\partial c_{\mathrm{t}, i}}{\partial t} = k \ c_\mathrm{m} \ (n - c_{\mathrm{t}, i}) - p \ c_{\mathrm{t}, i}

FESTIM

Finite element

H transport

Heat transfer

Complex geometries

The finite element method

\textcolor{#fc6f00}{u_h}(x) = \sum^N_{i=1}\textcolor{#444444}{U_i} \textcolor{#2676b2}{\phi_i}(x)
\int_{\Omega} D \nabla c_\mathrm{m} \cdot \nabla v_\mathrm{m} \ dx = \int_{\Omega} \left( k c_\mathrm{m} (n - c_\mathrm{t}) - p c_\mathrm{t} \right) \ v_\mathrm{t} \ dx \quad \forall \ (v_\mathrm{m}, v_\mathrm{t}) \in \hat{V}

Steady state weak formulation:

\int_{\Omega} \frac{c_\mathrm{m} - c_{\mathrm{m}, n}}{\Delta t} \ dx + \int_{\Omega} \frac{c_\mathrm{t} - c_{\mathrm{t}, n}}{\Delta t} \ dx+ \int_{\Omega} D \nabla c_\mathrm{m} \cdot \nabla v_\mathrm{m} \ dx = -\int_{\Omega} \left( k c_\mathrm{m} (n - c_\mathrm{t}) - p c_\mathrm{t} \right) \ v_\mathrm{m} \ dx + \int_{\Omega} \left( k c_\mathrm{m} (n - c_\mathrm{t}) - p c_\mathrm{t} \right) \ v_\mathrm{t} \ dx \quad \forall \ (v_\mathrm{m}, v_\mathrm{t}) \in \hat{V}

Transient weak formulation:

In FESTIM

Type of finite elements:

  • P1 (CG1) for \( c_\mathrm{m} \)
  • P1 or DG1 for \( c_\mathrm{t, i} \)

FESTIM: a code verified & validated

Experimental validation

Analytical verification

Exact

Computed concentration

Parametric optimisation technique

Cross-check with TMAP7

FESTIM main features

Physics

  • Hydrogen diffusion
  • Trapping (McNabb & Foster)
  • Heat transfer
  • Conservation of chemical potential
  • Soret effect

Dimension

1D

2D

3D

Boundary conditions

  • Imposed concentration/temperature
  • Hydrogen/heat flux
  • Recombination flux
  • Dissociation flux
  • Convective heat flux
  • Sievert's law
  • Plasma implantation approx.
  • ...

Traps

  • Time/space dependent densities
  • Extrinsic traps

FESTIM: an open-source code

More transparency

✅ More collaborations

✅ More flexibility

Automated documentation

FESTIM workshop

A FESTIM course to learn how to run H transport simulations

Monoblock simulations

FESTIM model

Heat flux \( \varphi_\mathrm{heat} \)

Imposed concentration

Convection

H recombination

Conservative assumptions:

  • 2D
  • Continuous exposure
  • No desorption on gaps

Influence of mechanical fields neglected

Boundary conditions

Convective flux: \( -\lambda \nabla T \cdot n = h \ (T-T_\mathrm{coolant}) \)

Recombination flux: \( -D \nabla c_\mathrm{m} \cdot n = K_r \ c_\mathrm{m}^2 \)

Incident heat flux: \( -\lambda \nabla T \cdot n = 10 \ \mathrm{MW \ m^{-2}} \)

Heat transfer coefficient: \( h = 70,000 \ \mathrm{W \ m^{-2} \ K^{-1}} \)

Coolant temperature: \( T_\mathrm{coolant} = 323 \ \mathrm{K} \)

Recombination coefficient: \( K_r =2.9 \times 10^{-14} \ \exp{(-1.92/k_B T)}\)  (\(\mathrm{m^4 \ s^{-1} }\) )

FESTIM model

Materials properties

Trapping parameters

W
Cu
CuCrZr
3.1 \times 10^{-16}
6.0 \times 10^{-17}
1.2 \times 10^{-16}
0.42
0.39
0.20
8.4 \times 10^{12}
8.0 \times 10^{13}
8.0 \times 10^{13}
1.00
0.50
0.85
1.1 \times 10^{-3}
5.0 \times 10^{-5}
5.0 \times 10^{-5}
k_0 \, \mathrm{(m^3 \, s^{-1})}
p_0 \, \mathrm{(s^{-1})}
E_k \, \mathrm{(eV)}
E_p \, \mathrm{(eV)}
n \, \mathrm{(at \,fr)}

Simulation parameters

Thermal properties

\lambda \, \mathrm{(W \, K^{-1})}
-7.8\times 10^{-9} \, T^3 + 5\times 10^{-5} \, T^2 - 1.1\times 10^{-1} \, T + 1.8\times 10^2
-3.9\times 10^{-8} \, T^3 + 3.8\times 10^{-5} \, T^2 - 7.9\times 10^{-2} \, T + 4\times 10^2
-5.3\times 10^{-7} \, T^3 + 6.5\times 10^{-4} \, T^2 - 2.6\times 10^{-1} \, T + 3.1\times 10^2

W

14 mm

 12 mm

1.5 mm

1 mm

Geometry

Cu

CuCrZr

  • Maximum 77% difference

 

  • Equivalent trap:
    • $$n=n_1 + n_2$$
    • $$E_p = \frac{E_{p,1}\ n_1 + E_{p,2} \ n_2}{n} $$

Approximations

Neglecting Trap 2

A 2D model is the best trade-off between performance and accuracy

When neglecting desorption on gaps

3D = 2D

H concentration

160k tetrahedrons

59k triangles

2D allows for a more refined model

ITER operations will be pulsed

Hot

Cold

The H inventory is influenced by the temperature evolution

Hot

Cold

H inventory (\(\mathrm{m^{-2}}\) )

Assuming a continuous exposure allows to have a bigger stepsize

            Cycling: 1500 timesteps

Continuous: 86 timesteps

H inventory (\(\mathrm{m^{-2}}\) )

Low flux:

\( 5.0 \ \mathrm{MW \ m^{-2}} \)

\( 5.0 \times 10^{21}\ \mathrm{m^{-2} \ s^{-1}} \)

High flux:

\( 13 \ \mathrm{MW \ m^{-2}} \)

\( 1.6 \times 10^{22}\ \mathrm{m^{-2} \ s^{-1}} \)

Similar results were obtained with MHIMS

Monoblock thermal response

\varphi_\mathrm{heat} = 1\, \mathrm{MW \, m^{-2}}
\varphi_\mathrm{heat} = 10\, \mathrm{MW \, m^{-2}}
  • High temperature gradient
  • 2D temperature field

Monoblock thermal response

T_\mathrm{surface} = 1.1\times10^{-4} \, \varphi_\mathrm{heat} + T_\mathrm{coolant}

H concentration

At

t = 10^7 \, \mathrm{s}
T_\mathrm{surface} = 700 \, \mathrm{K}
c_\mathrm{m} = 10^{20} \, \mathrm{H\,m^{-3}}
  • Penetration front

 

  • High retention zone in colder regions

Permeation to coolant

DEMO monoblock

Influence of non-instantaneous recombination

wo gap and wo recombination, independent of thickness (2D)

Monoblock baking

To be published

H concentration

At

t = 10^7 \, \mathrm{s}
\mathrm{inventory} = \int c \, dV
T_\mathrm{surface} = 700 \, \mathrm{K}
c_\mathrm{m} = 10^{21} \, \mathrm{H\,m^{-3}}
c_\mathrm{m} = 10^{20} \, \mathrm{H\,m^{-3}}
T_\mathrm{surface} = 1000 \, \mathrm{K}

Parametric study

+

+

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

Parametric study

+

+

+

+

+

+

+

+

+

+

+

+

+

+

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

Parametric study

\mathrm{inventory} = \int c \, dV

At

t = 10^7 \, \mathrm{s}

Gaussian Process Regression (GPR)

\( T_\mathrm{surface} \) (K)

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

Gaussian process regression

https://juanitorduz.github.io/gaussian_process_reg/

Parametric study

Monoblock behaviour law

\mathrm{inventory} = \int c \, dV

At

t = 10^7 \, \mathrm{s}

Rapid assessment of monoblock inventories

\( c_\mathrm{surface} \) (\(\mathrm{m}^{-3}\))

\( T_\mathrm{surface} \) (K)

c_\mathrm{surface} = \frac{\varphi_\mathrm{imp} \ R_p}{D(T)}
\varphi_\mathrm{imp} \ R_p
\varphi_\mathrm{heat}

+

+

+

+

+

+

+

+

+

+

A better behaviour law

Instantaneous recombination

✔️Non homogeneous surface temperature

✔️Non homogeneous surface concentration

❌Only works for instantaneous recombination

 

c_\mathrm{surface} = \frac{\varphi_\mathrm{imp} \ R_p}{D(T)} + \sqrt{\frac{\varphi_\mathrm{imp}}{K_r(T)}}
R_p
\varphi_\mathrm{heat}

+

+

+

+

+

+

+

+

+

+

A better behaviour law

Non-instantaneous recombination

✔️Non homogeneous surface temperature

✔️Non homogeneous surface concentration

✔️Non-instantaneous recombination

3 independent variables

+

\varphi_\mathrm{imp}

A better behaviour law

Automatic sampling

Scaling up to the divertor?

Inner Vertical Target

Inner Strike Point

Outer Strike Point

Outer Vertical Target

Dome

Converting plasma inputs...

T_\mathrm{surface} = 1.1\times10^{-4} \, \varphi_\mathrm{heat} + T_\mathrm{coolant}

Heat flux from SOLPS

Shot #2399

Plasma codes

\frac{\partial n}{\partial t}+\vec{\nabla} \cdot\left(n u \vec{b}+n \vec{v}_{\perp}\right)=S^n
\begin{aligned} \frac{\partial n u}{\partial t} &+\vec{\nabla} \cdot\left(n u\left(u \vec{b}+\vec{v}_{\perp}\right)\right) \\ &=-\nabla_{\|}\left(\frac{n T_{\mathrm{i}}}{m_{\mathrm{i}}}\right)+\frac{q_{\mathrm{i}} n E_{\|}}{m_{\mathrm{i}}}+\frac{R_{\mathrm{ei}}}{m_{\mathrm{i}}}+\vec{\nabla} \cdot\left(v n \vec{\nabla}_{\perp} u\right)+S^{n u} \end{aligned}
\begin{gathered} \frac{\partial}{\partial t}\left(\frac{3}{2} n T_{\mathrm{i}}+\frac{1}{2} m_{\mathrm{i}} n u^2\right)+\vec{\nabla} \cdot\left(\left(\frac{5}{2} n T_{\mathrm{i}}+\frac{1}{2} m_{\mathrm{i}} n u^2\right)\left(u \vec{b}+\vec{v}_{\perp}\right)\right) \\ =\vec{\nabla} \cdot\left(\kappa_{\mathrm{i}} \nabla_{\|} T_{\mathrm{i}} \vec{b}+\chi n \vec{\nabla}_{\perp} T_{\mathrm{i}}+v n \vec{\nabla}_{\perp}\left(\frac{1}{2} m_{\mathrm{i}} u^2\right)\right) \\ \quad+q_{\mathrm{i}} n u E_{\|}+R_{\mathrm{ei}} u+Q_{\mathrm{ei}}+S^{E \mathrm{i}} \end{gathered}
\begin{aligned} &\frac{\partial}{\partial t}\left(\frac{3}{2} n T_{\mathrm{e}}\right)+\vec{\nabla} \cdot\left(\left(\frac{5}{2} n T_{\mathrm{e}}\right)\left(u \vec{b}+\vec{v}_{\perp}\right)\right) \\ &=\vec{\nabla} \cdot\left(\kappa_{\mathrm{e}} \nabla_{\|} T_{\mathrm{e}} \vec{b}+\chi n \vec{\nabla}_{\perp} T_{\mathrm{e}}\right)-e n u E_{\|}-R_{\mathrm{e} i} u-Q_{\mathrm{ei}}+S^{E \mathrm{e}} \end{aligned}

Mass transport

Momentum

Ions energy \(T_\mathrm{i}\)

Electrons energy \(T_\mathrm{e}\)

\( n \): density

\( u \): velocity

Surface concentration can be estimated

Implantation depth \(R_p\)

Depth

Concentration

$$\varphi_\mathrm{imp}$$

$$\varphi_\mathrm{diff}$$

$$\varphi_\mathrm{desorption}$$

$$\varphi_\mathrm{imp} = \varphi_\mathrm{desorption} + \varphi_\mathrm{diff} $$

 

When \(\varphi_\mathrm{diff} \ll \varphi_\mathrm{desorption} \rightarrow c_\mathrm{max} = \frac{\varphi_\mathrm{imp} \, R_p }{D}\)

\( c_\mathrm{max}\)

Converting plasma inputs...

T_\mathrm{surface} = 1.1\times10^{-4} \, \varphi_\mathrm{heat} + T_\mathrm{coolant}
R_{p, \, i} = R_{p, \, i}(E_\mathrm{particle, \, i})
c_\mathrm{surface} = \frac{\textcolor{#fd9b21}{\varphi_\mathrm{ions} \, R_{p, \, \mathrm{ions}}} + \textcolor{#3c78d8}{\varphi_\mathrm{atoms} \, R_{p \, \mathrm{atoms}} }}{D(T_\mathrm{surface})}

Implantation range and reflection coeff. are obtained from SRIM

Use of SRIM is questionable here...

\varphi_\mathrm{imp} = (1 - r) \ \varphi_\mathrm{incident}

The flux of He is \( \approx \) 1 % of that of D 

...to divertor inventory

\varphi_\mathrm{heat}
\varphi_\mathrm{particle}
T_\mathrm{surface}

Monoblock inventory

c_\mathrm{surface}
E_\mathrm{particle}
c_\mathrm{surface} = \frac{\varphi_\mathrm{ions} \, R_{p, \, \mathrm{ions}} + \varphi_\mathrm{atoms} \, R_{p \, \mathrm{atoms}}}{D(T_\mathrm{surface})}
T_\mathrm{surface} = 1.1\times10^{-4} \, \varphi_\mathrm{heat} + T_\mathrm{coolant}

+

Divertor inventory

Exposure conditions can be obtained for several divertor pressures

SOLPS runs: Pitts et al NME (2020)

The inventory is estimated from the surrogate model

SOLPS runs: Pitts et al NME (2020)

  • The strike point is not the maximum H inventory
  • The total divertor inventory can be computed

$$\mathrm{inv}_\mathrm{divertor} = N_\mathrm{cassettes}  ( N_\mathrm{PFU-IVT} \int \mathrm{inv}_\mathrm{IVT} (x) dx + $$

$$N_\mathrm{PFU-OVT} \int \mathrm{inv}_\mathrm{OVT} (x) dx )$$

The inventory is estimated from the surrogate model

SOLPS runs: Pitts et al NME (2020)

  • The strike point is not the maximum H inventory
  • The total divertor inventory can be computed

 

$$\mathrm{inv}_\mathrm{divertor} = 54  ( 16 \int \mathrm{inv}_\mathrm{IVT} (x) dx + $$

$$22 \int \mathrm{inv}_\mathrm{OVT} (x) dx )$$

The inventory is estimated from the surrogate model

Divertor H inventory (g) at \( t = 10^7 \, \mathrm{s}\)

Safety limit \( = \) 700 g of tritium

\( \max \approx \) 2 % limit

ITER divertor inventory

Safety limit \( = \) 700 g of tritium

\( \max \approx \) 2 % limit

Assuming 50% T

\( \approx \) 1% limit

ITER divertor inventory

Divertor H inventory (g) at \( t = 10^7 \, \mathrm{s}\)

Neglecting trap 2

Influence of helium on hydrogen transport

Why should we care?

Why should we care?

Bubbles

Tungsten fuzz

Thermo-mechanical properties

Tritium production

Hydrogen transport

Sources of helium

Neutronics monoblock simulations with OpenMC

500 MW of fusion power

\(\approx 10^{20} \mathrm{n/s} \)

500 MW of fusion power

\(\approx 10^{20} \mathrm{n/s} \)

Energy released by 1 DT reaction:

\(17.58 \ \mathrm{MeV} = 2.81 \times 10^{-12} \ \mathrm{J}\)

Tally (n,Xa) reaction

DT neutron source energy spectrum

He generation distribution

Standard deviation

Neutronic heating

Todo: assess influence of this on the thermals

Sources of helium

Tritium decay simulations with FESTIM

Neutronics monoblock simulations with OpenMC

Tritium decay

\textcolor{grey}{\frac{\partial c_\mathrm{m}}{\partial t} = \nabla \cdot (D \nabla c_\mathrm{m}) - \frac{\partial c_{\mathrm{t}, i}}{\partial t}} - \lambda c_\mathrm{m}
\textcolor{grey}{\frac{\partial c_{\mathrm{t}, i}}{\partial t} = k \ c_\mathrm{m} \ (n - c_{\mathrm{t}, i}) - p \ c_{\mathrm{t}, i}} - \lambda c_{\mathrm{t}, i}

Decay constant \( \lambda = 1.77 \times 10^{-9} \ \mathrm{s}^{-1}\)

Decay source for Helium:    \( \lambda \sum  c_i \)

Sources of helium

Tritium decay simulations with FESTIM

Neutronics monoblock simulations with OpenMC

→ Focus on direct implantation

He\(_1\)

He\(_2\)

He\(_4\)

He\(_3\)

V\(_1\)He\(_7\)

V\(_1\)He\(_8\)

V\(_1\)He\(_9\)

V\(_1\)He\(_{10}\)

Our clustering scheme

Trap mutation

or

self-trapping

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^{6}k_{1,i}^+ c_1 c_i - \langle k_b^+\rangle c_1 c_b \)

$$ \vdots $$

\( \frac{\partial c_6}{\partial t} = \nabla \cdot (D_6 \nabla c_6) - k^+_{1, 6} c_1 c_6 + k_{1,5}^+ c_1 c_{5} \)

\( \frac{\partial c_b}{\partial t} = k_{1,6}^+ c_1 c_{6} \)

\(\frac{\partial \langle i_b \rangle c_b}{\partial t} = 7 k_{1, 6}^+ c_1 c_6 + \langle k_b^+ \rangle c_1 c_b \)

Our clustering scheme

average clustering rate in bubbles

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\)

 

average bubble radius

\( \langle r_b \rangle = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{\langle i_b \rangle}{4} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

Only 8 equations:

Let's consider the following reactions

\mathrm{He}_x + \mathrm{He}_1 \xrightleftharpoons[]{} \mathrm{He}_{x+1}
\mathrm{He}_x\mathrm{V}_y \rightarrow \mathrm{He}_{x}\mathrm{V}_{y+1} + \mathrm{I}_1

Helium clustering (or emission)

Trap mutation

\mathrm{A} + \mathrm{B} \xrightleftharpoons[k^-]{k^+} \mathrm{AB}
\frac{\partial c_\mathrm{AB}}{\partial t} = -\frac{\partial c_\mathrm{A}}{\partial t} = -\frac{\partial c_\mathrm{B}}{\partial t} = k^+ c_\mathrm{A} c_\mathrm{B} - k^- c_\mathrm{AB}
k^+ = (r_A + r_B) (D_A + D_B)
k^- = \rho k^+ e^{-E_b/k_B T}

For each reaction

\frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) + P_i + R_i(c_1, c_2, \cdots, c_N)

3-species model:

Rate constants:

N-species model:

Diffusion coefficients

Capture radii

Diffusion

Production

Reaction

Binding energy

0 = D_i \nabla^2 n_i(r) \quad \mathrm{s.t.} \quad n_i(r_{i,j}) = 0 \quad \& \quad n_i(\infty) = c_i
n_i(r) = c_i \ (1-\frac{r_{i,j}}{r})
I_{i,j} = \oint_S D_i \frac{d\ n_i(r)}{dr}\Bigr|_{\substack{r=r_{i,j}}} = 4\pi \ r_{i,j} \ D_i \ c_i
k_{i,j}^+ = \frac{I_{i,j}}{c_i} = 4 \pi \ r_{i,j} \ D_i

Derivation of the forward reaction rate

\(n_i\): local concentration

\(c_i \): mean concentration

\( r_{i,j} = r_i + r_j \): coordinate where the reaction happens (capture radii)

$$c_i$$

$$j$$

in spherical coordinates

2 diffusive species from superpostion principle:

$$k_{i,j}^+ = 4\pi \ r_{i,j} \ (D_i + D_j) $$

Issue #1: Too many equations

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^\infty k_{1,i}^+ c_1 c_i \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_{N}}{\partial t} =\) \(- k^+_{1, N} c_1 c_{N}\) \( + k_{1,N-1}^+ c_1 c_{N-1} \)

 

\( \frac{\partial c_{N+1}}{\partial t} =\) \(- k^+_{1, N+1} c_1 c_{N+1}\) \( + k_{1,N}^+ c_1 c_{N} \)

 

\( \frac{\partial c_{N+2}}{\partial t} =\) \(- k^+_{1, N+2} c_1 c_{N+2}\) \( + k_{1,N+1}^+ c_1 c_{N+1} \)

$$ \vdots $$

💪

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^\infty k_{1,i}^+ c_1 c_i \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_{N+1}}{\partial t} =\) \(- k^+_{1, N+1} c_1 c_{N+1}\) \( + k_{1,N}^+ c_1 c_{N} \)

\( \frac{\partial c_{N+2}}{\partial t} =\) \(- k^+_{1, N+2} c_1 c_{N+2}\) \( + k_{1,N+1}^+ c_1 c_{N+1} \)

\( \frac{\partial c_{N+3}}{\partial t} =\) \(- k^+_{1, N+3} c_1 c_{N+3}\) \( + k_{1,N+2}^+ c_1 c_{N+2} \)

$$ \vdots $$

💪

Issue #1: Too many equations

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^\infty k_{1,i}^+ c_1 c_i \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \sum\limits_{i=N+1}^{\infty} \frac{\partial c_i}{\partial t} = k_{1,N}^+ c_1 c_{N} \)

💪

Issue #1: Too many equations

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^\infty k_{1,i}^+ c_1 c_i \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_b}{\partial t} = k_{1,N}^+ c_1 c_{N} \)

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

💪

Issue #1: Too many equations

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^{N}k_{1,i}^+ c_1 c_i - \sum\limits_{i=N+1}^\infty k_{i, 1}^+c_i c_1 \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_b}{\partial t} = k_{1,N}^+ c_1 c_{N} \)

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

💪

Issue #1: Too many equations

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^{N}k_{1,i}^+ c_1 c_i - \langle k_b^+\rangle c_1 c_b \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_b}{\partial t} = k_{1,N}^+ c_1 c_{N} \)

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = \left( \sum\limits_{i=N+1}^{\infty} k_ {i, 1}^+ c_i \right) / c_b\) : average clustering rate in bubbles

💪

Issue #1: Too many equations

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = \left( \sum\limits_{i=N+1}^{\infty} k_ {i, 1}^+ c_i \right) / c_b\)

\( = \left(\sum\limits_{i=N+1}^{\infty} 4 \pi D_1 (r_1 + r_i) c_i\right) / c_b \)

💪

average clustering rate in bubbles

Issue #2: what's the value of \( \langle k_b^+ \rangle \)?

Issue #2: what's the value of \( \langle k_b^+ \rangle \)?

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle r_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} r_ i c_i \right) / c_b\) : average bubble radius

\( \langle k_b^+ \rangle \)\( = \left( \sum\limits_{i=N+1}^{\infty} k_ {i, 1}^+ c_i \right) / c_b\)

\( = \left(\sum\limits_{i=N+1}^{\infty} 4 \pi D_1 (r_1 + r_i) c_i\right) / c_b \)

\( =4 \pi D_1 (r_1 + \langle r_b \rangle)\)

💪

average clustering rate in bubbles

\( r_i = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} n_{\mathrm{V},i} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

💪

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\) : average clustering rate in bubbles

\( \langle r_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} r_ i c_i \right) / c_b\) : average bubble radius

Issue #3: what's the value of \( \langle r_b \rangle \)?

\( r_i = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{i}{4} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

\( n_{\mathrm{V},i} = i/4 \) : 4 He per vacancy

💪

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\) : average clustering rate in bubbles

\( \langle r_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} r_ i c_i \right) / c_b\) : average bubble radius

Issue #3: what's the value of \( \langle r_b \rangle \)?

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\) : average clustering rate in bubbles

\( \langle r_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} r_ i c_i \right) / c_b\) : average bubble radius

\( \langle i_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} i c_i \right) / c_b\) : average He content in bubbles

\( n_{\mathrm{V},i} = i/4 \) : 4 He per vacancy

💪

\( \langle r_b \rangle = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{\langle i_b \rangle}{4} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

\( r_i = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{i}{4} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

Issue #3: what's the value of \( \langle r_b \rangle \)?

\( \langle r_b \rangle = r_{\mathrm{He}_0\mathrm{V}_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{\langle i_b \rangle}{4} \right)^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right)^{1/3}\)

\(  \frac{\sum\limits_{i=N+1}^{\infty} i^{1/3} c_i } { c_b}  \approx \left( \sum\limits_{i=N+1}^{\infty} i c_i  / c_b \right)^{1/3} = \langle i_b \rangle ^{1/3}\)

When \( c_i \) has a narrow gaussian distribution (ie. \(\sigma / \mu \ll 1\) )

Sum approximation

\( \langle i_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} i c_i \right) / c_b\)

\( \langle i_b \rangle c_b=  \sum\limits_{i=N+1}^{\infty} i c_i \)

\(\frac{\partial \langle i_b \rangle c_b}{\partial t} = \sum\limits_{i=N+1}^{\infty} i \frac{\partial c_i}{\partial t}\)

💪

\(\frac{\partial \langle i_b \rangle c_b}{\partial t} = (N+1) k_{1, N}^+ c_1 c_N + \langle k_b^+ \rangle c_1 c_b \)

↓ trust me

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\) : average clustering rate in bubbles

\( \langle i_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} i c_i \right) / c_b\) : average He content in bubbles

Issue #4: what's the value of \( \langle i_b \rangle \)?

\( \frac{\partial c_1}{\partial t} = \nabla \cdot (D_1 \nabla c_1) + P_1 - 2 k^+_{1, 1} c_1^2 - \sum\limits_{i=2}^{N-1}k_{1,i}^+ c_1 c_i - \langle k_b^+\rangle c_1 c_b \)

$$ \vdots $$

\( \frac{\partial c_i}{\partial t} = \nabla \cdot (D_i \nabla c_i) - k^+_{1, i} c_1 c_i + k_{1,i-1}^+ c_1 c_{i-1} \)

$$ \vdots $$

\( \frac{\partial c_b}{\partial t} = k_{1,N}^+ c_1 c_{N} \)

💪

\(\frac{\partial \langle i_b \rangle c_b}{\partial t} = (N+1) k_{1, N}^+ c_1 c_N + \langle k_b^+ \rangle c_1 c_b \)

\( c_b = \sum\limits_{i=N+1}^{\infty} c_i \) : bubble concentration

\( \langle k_b^+ \rangle = 4 \pi D_1 (r_1 + \langle r_b \rangle)\) : average clustering rate in bubbles

\( \langle i_b \rangle = \left( \sum\limits_{i=N+1}^{\infty} i c_i \right) / c_b\) : average He content in bubbles

Issue #4: what's the value of \( \langle i_b \rangle \)?

Assumption time!

  • Only pure He clusters are mobile
  • Trap-mutation from 7 He
  • Grouping starts at \( i > 6 \)
  • He/V ratio: 4
  • No He emission from bubbles
  • Pre-existing vacancies are neglected
  • We don't solve for W self-interstitials

 

Varying the grouping threshold

Results on a half-slab case

  • Helium first diffuses rapidly into the bulk

 

  • Mobile helium is consumed to form bubbles

\(c_i = 0 \)

W

He implantation

Mobile helium

Bubbles

Retention

$$\mathrm{m}^{-3}$$

Half-slab case

  • "Semi-infinite" (0.6 mm)
  • Helium source
    • ​100 eV
    • Gaussian distribution
      •  \( \mu =1.5 \mathrm{nm} \,      \sigma = 1.5 \mathrm{nm} \)
    • Flux \( 10^{22} \, \mathrm{m^{-2} \, s^{-1} }\)
  • Temperature 1000 K

\(c_i = 0 \)

0.6 mm

Code comparison

Faney et al. Nucl. Fusion 2014

  • 100 eV He
  • Flux \( 10^{22} \mathrm{\, m^{-2} \, s^{-1}} \)
  • Fluence \(5 \times 10^{25} \mathrm{\ m^{-2}} \)

30 nm

\( c_i = 0 \)

\( c_i = 0 \)

Discrepancies at high T due to different sets of dissociation energies

Dissociation energy sensitivity

Solid: +0

Dashed: + 0.5 eV

Dash-point: - 0.5 eV

Varying flux and temperature

\( c_\mathrm{He_1 \, ideal} = \frac{\varphi_\mathrm{imp} R_p}{D_1(T)} \)

Varying temperature and particle flux

Parametric study

1 h

\( \int c_b \langle i_b \rangle dx\)

He inventory in bubbles

Parametric study

1 h

\( \bar{\langle i_b \rangle} = \frac{\int c_b \langle i_b \rangle dx}{\int c_b dx} = \frac{\mathrm{inventory}}{\mathrm{total \, bubbles}}\)

Mean helium content in bubbles

Parametric study

 \(\int c_b dx\)

Total bubbles

1 h  efef

Two regimes can be identified

Nucleation

🡺Self trapping

🡺\( c_b \) increases

Growth

🡺\( \langle i_b \rangle \) increases

🡺\( \langle k_b^+ \rangle \) increases

\( \langle i_b \rangle \) is low

\( \langle k_b^+ \rangle \) is low

When \( c_b \) is large enough

Two regimes can be identified

\(\frac{\partial c_b}{\partial t} = k_{1, N}^+ c_1 c_N\)

\(\frac{\partial \langle i_b \rangle c_b}{\partial t} = (N+1) k_{1, N}^+ c_1 c_N + \langle k_b^+ \rangle c_1 c_b \)

\( \langle i_b \rangle \approx 7 \Leftrightarrow \langle k_b^+ \rangle \approx 0\)

\( \Leftrightarrow \frac{\partial \langle i_b \rangle c_b}{\partial t} \approx (N+1) k_{1, N}^+ c_1 c_N \)

\( \Leftrightarrow \langle i_b \rangle \frac{\partial c_b}{\partial t} + c_b \frac{\partial \langle i_b \rangle}{\partial t} \approx (N+1) k_{1, N}^+ c_1 c_N  \)

\( \Leftrightarrow \frac{\partial \langle i_b \rangle}{\partial t} \propto N +1 - \langle i_b \rangle \approx 0\)

\( c_b \gg c_N \)

\(\Leftrightarrow c_N \approx 0 \)

\(\Leftrightarrow \frac{\partial c_b}{\partial t} \approx 0 \)

\( \Leftrightarrow \frac{\partial \langle i_b \rangle c_b}{\partial t} \approx \langle k_b^+ \rangle c_1 c_b \)

\( \Leftrightarrow \frac{\partial \langle i_b \rangle}{\partial t} \approx \langle k_b^+ \rangle c_1\)

Nucleation regime

Growth regime

N cannot be lower than 6

Regime where intermediate clusters don't matter anymore

The bubble growth model was compared with experiments

Mykola Ialovega's PhD research

\(75 \ \mathrm{eV}\) He at \( 2.3 \times 10^ {22} \ \mathrm{m^{-2} \ s^{-1}}\) and \(1053 \ \mathrm{K} \) for \(13 \ \mathrm{s}\)

How to couple this to H transport?

Ialovega's experiment

He exposure

D exposure

Thermo-desorption

Repeat 5 times

W

Experimental conditions

Sample: \(100 \ \mathrm{\mu m} \) W

Pre-damage: \(75 \ \mathrm{eV}\) He at \( 2.3 \times 10^ {22} \ \mathrm{m^{-2} \ s^{-1}}\) and \(1053 \ \mathrm{K} \) for \(13 \ \mathrm{s}\)

 

Initial cleaning TDS after He implantation up to 870 K

D exposure: 250 eV at room temperature

Flux: \( 1.7 \times 10^ {16} \ \mathrm{m^{-2} \ s^{-1}}\)

Fluence: \( 4.5 \times 10^ {19} \ \mathrm{m^{-2}}\)

TDS temperature ramp: 1 K/s

Ialovega's experiment

Ialovega's experiment

Lack of control experiment

No initial TDS

❌No cycling

❌Not performed at the time of the experiment

 

 

→ Can only be compared qualitatively!

Ialovega's experiment

Ialovega's experiment

Ialovega's experiment

Correlation He release/D release

Hypotheses

  • Helium doesn't desorb from bubbles

 

  • Pre-existing defects exist (suggested by further analysis)

 

  • Helium can saturate traps for Deuterium

 

\textcolor{#1f77b4}{n_b} = \textcolor{#ff7f0e}{c_b} \ f \ A(\langle r_b \rangle)
\mathrm{sites \, m^{-2}}
\mathrm{bubbles \, m^{-3}}
\mathrm{m^{2}}

surface coverage of trapping sites (tuning parameter)

f
\langle r_b \rangle = r_\mathrm{He_0 V_1} + \left( \frac{3}{4\pi} \frac{a_0^3}{2} \frac{\langle i_b \rangle}{4} \right) ^{1/3} - \left( \frac{3}{4\pi} \frac{a_0^3}{2} \right) ^{1/3}

bubbles radius

A = 4 \pi \langle r_b \rangle ^2

bubbles area

n_b
c_b
f = 3 \times 10 ^{18} \mathrm{m ^{-2}}

The He model was weakly coupled to FESTIM

The model reproduced the experiment

Bubble-induced trap

  • 4 traps including a bubble-induced trap

 

  • TDS 1: density of available pre-existing traps is zero

 

  • TDS 2-5: density of pre-existing traps  \( \approx 2\times10^{-3}\ \mathrm{at.fr.}\)

 

  • \( f \) is unchanged \( 3 \times 10^{18} \ \mathrm{m^{-2}}\)

Initial state

Pre-existing defects 

He implantation

He implantation

1st D implantation

1st D implantation

1st TDS

He is removed from pre-existing defects

D is desorbed from bubbles

2nd D implantation

2nd D implantation

2nd D implantation

2nd TDS

D desorption from secondary defects

Repeat...

Impact on divertor inventory?

Divertor H inventory (g) at \( t = 10^7 \, \mathrm{s}\)

Increased trapping (bubbles)

Reduced trapping

(trap saturation)

Divertor inventory could be even lower

Main conclusions

  • FESTIM was developed to assess T inventory in ITER plasma facing components and is now used for other applications (breeding blankets, experimental work...).

 

  • Under conservative assumptions, the T inventory in the ITER divertor is below 1% of the in-vessel safety limit after 25 000 pulses.

 

  • Results suggest that the presence of helium could reduce this inventory further by saturating traps.

Where to go from here?

  • Validate the monoblock model with experimental data

 

  • Retention in Be co-deposited layers will domitate the inventory

 

  • Confirm/infirm our interpretation of the He-H interactions

 

  • Investigate other in-vessel components like breeding blankets
k_\mathrm{burst} = e^{-x}
\frac{\partial c_b}{\partial t} = k_ {1,N}^+ c_1 c_N \\
\frac{\partial (\langle i_b \rangle c_b)}{\partial t} = (N+1)k_ {1,N}^+ c_1 c_N + \langle k_b^+ \rangle c_1 c_b \\ - \langle i_b \rangle k_\mathrm{burst} c_b

Adding bubble bursting

Thank you for your attention

Any questions?

Hydrogen transport in tokamaks

By Remi Delaporte-Mathurin

Hydrogen transport in tokamaks

This is the presentation I gave at my PhD defense on the 17th of October 2022

  • 371