Mathematical Art

&

Complex Analysis

Mathematical Art

Dr. Robert Jacobson

Roger Williams University

22 March 2016

http://goo.gl/xmbzcX

Follow along on your device at this address.

Complex Numbers

z=x+yi
z=x+yiz=x+yi
i^2=-1
i2=1i^2=-1

where

and

x
xx
y
yy

real numbers, and                     .

are ordinary

The number      is called the real part while      is called the imaginary part.

x
xx
y
yy

Every real number is also a complex number.

Complex Arithmetic

(2+2i)\cdot(3-4i)=2\cdot3-2\cdot 4\cdot i+2\cdot i\cdot 3 - 2\cdot4\cdot i^2
(2+2i)(34i)=2324i+2i324i2(2+2i)\cdot(3-4i)=2\cdot3-2\cdot 4\cdot i+2\cdot i\cdot 3 - 2\cdot4\cdot i^2
=6-8i+6i-8i^2
=68i+6i8i2=6-8i+6i-8i^2
=14-2i
=142i=14-2i
=6-8i+6i-8(-1)
=68i+6i8(1)=6-8i+6i-8(-1)
(7-10i) + (-3+5i)=4-5i
(710i)+(3+5i)=45i(7-10i) + (-3+5i)=4-5i

Addition:

Multiplication:

"Complexification" of functions:

\displaystyle e^z=1+z+\frac{1}{2!}z^2+\frac{1}{3!}z^3+\cdots=\sum_{n=0}^\infty \frac{1}{n!}z^n
ez=1+z+12!z2+13!z3+=n=01n!zn\displaystyle e^z=1+z+\frac{1}{2!}z^2+\frac{1}{3!}z^3+\cdots=\sum_{n=0}^\infty \frac{1}{n!}z^n
\displaystyle\sin(z)=\frac{e^{zi}-e^{-zi}}{2i} = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}\,z^n
sin(z)=eziezi2i=n=0(1)n(2n+1)!zn\displaystyle\sin(z)=\frac{e^{zi}-e^{-zi}}{2i} = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}\,z^n

The Complex Plane

Conformal Maps

A map     is conformal at a point    

if    preserves the angle between any two curves passing through   .

f
ff
z
zz
f
ff
z
zz
z \to z^2
zz2z \to z^2

Conformal

Map

Viewer

Spherical Video

Spherical Video

Euclidean Geometry

In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.

Hyperbolic Geometry

For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R.

Hyperbolic Geometry

Poincaré Disk Model

Hyperbolic Geometry

Poincaré Disk Model

Go check out this other guy's math talk.

M. C. Escher (1898-1972)

Circle Limit III, woodcut, 1959

Hyperbolic Geometry

Upper Half Plane Model

Hyperbolic Geometry

Upper Half Plane Model

Poincaré Disk Model

\displaystyle z\mapsto \frac{z-i}{z+i}
zziz+i\displaystyle z\mapsto \frac{z-i}{z+i}

Hyperbolic Geometry

Upper Half Plane Model

Upper Half Plan Limit III

Hyperbolic Crochet

It's on Amazon: http://amzn.com/1568814526.

Hyperbolic Coral

Yellow Fiji Leather Coral

The Professor Spiral I

The Professor Spiral II

The Professor Spiral III

Mathematics of The Droste Spiral

"What magic is this?!"

M. C. Escher (1898-1972)

M. C. Escher (1898-1972)

Print Gallery, 1956

Print Gallery, 1956

The Mathematical Structure of Escher's Print Gallery

De-Escherization

The Mathematical Structure of Escher's Print Gallery

De-Escherization

"The map \(h(w)\) is given by the easy formula \(h(w)=w^{(2\pi i + \log 256)/(2\pi i)}\)."

Stereographic Projection

Stereographic Projection

Stereographic Projection

(X, Y) = \left(\frac{x}{1 - z}, \frac{y}{1 - z}\right)
(X,Y)=(x1z,y1z)(X, Y) = \left(\frac{x}{1 - z}, \frac{y}{1 - z}\right)
(x, y, z) = \left(\frac{2 X}{1 + X^2 + Y^2}, \frac{2 Y}{1 + X^2 + Y^2}, \frac{-1 + X^2 + Y^2}{1 + X^2 + Y^2}\right)
(x,y,z)=(2X1+X2+Y2,2Y1+X2+Y2,1+X2+Y21+X2+Y2)(x, y, z) = \left(\frac{2 X}{1 + X^2 + Y^2}, \frac{2 Y}{1 + X^2 + Y^2}, \frac{-1 + X^2 + Y^2}{1 + X^2 + Y^2}\right)

Point on sphere to point on plane:

Point on plane to point on sphere:

Stereographic Projection

Stereographic Projection

Mathematical Art and Complex Analysis

By Robert Jacobson

Mathematical Art and Complex Analysis

Listen to a complex analyst explain how mathematicians and artists use ideas from the field of complex analysis to create art.

  • 948