Clayton Shonkwiler PRO
Mathematician and artist
Florida State University
National Science Foundation (DMS–2107700)
Simons Foundation (#709150)
The Ohio State University
Johns Hopkins University
Colorado State University
Symmetry + geometry sometimes tells you an optimization problem is easier than expected.
A spanning set \(f_1, \dots , f_n \in \mathbb{C}^d\) is a frame.
\(\Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n}\)
Definition.
\(\{f_1,\dots, f_n\}\subset \mathbb{C}^d\) is a Parseval frame if \(\operatorname{Id}_{d\times d}=FF^*=f_1f_1^*+\dots+f_nf_n^*\).
An equal-norm Parseval frame (ENP frame) is a Parseval frame \(f_1,\dots , f_n\) with \(\|f_i\|^2=\|f_j\|^2\) for all \(i\) and \(j\).
\(\sum \|f_i\|^2=\operatorname{tr}F^*F=\operatorname{tr}FF^*=\operatorname{tr}\operatorname{Id}_{d \times d} = d\), so each \(\|f_i\|^2=\frac{d}{n}\).
Definition [Benedetto–Fickus, Casazza–Fickus]
The frame potential is
\(\operatorname{FP}(F) = \|FF^\ast\|_{\operatorname{Fr}}^2\)
Proposition [cf. Welch]
The equal-norm Parseval frames are exactly the global minima of \(\operatorname{FP}|_{\text{equal norm}}\).
Theorem [Benedetto–Fickus]
As a function on equal-norm frames with fixed \(d\) and \(n\), \(\operatorname{FP}\) has no spurious local minima.
Theorem [with Mixon, Needham, and Villar]
On the space of equal-norm frames, consider the initial value problem
\(\Gamma(F_0,0) = F_0, \qquad \frac{d}{dt}\Gamma(F_0,t) = -\operatorname{grad}\operatorname{FP}(\Gamma(F_0,t))\).
If \(F_0\) has full spark, then \(\lim_{t \to \infty} \Gamma(F_0,t)\) is an ENP frame.
Theorem [with Needham]
Same for fusion frames.
Definition [cf. Bodmann–Casazza]
The normalizing potential is
\(\operatorname{NP}(f_1,\ldots,f_n) = \sum_{i=1}^n \|f_i\|^4.\)
Proposition [Bodmann–Haas]
The ENP frames are exactly the global minima of \(\operatorname{NP}|_{\text{Parseval}}\).
Theorem [with Caine and Needham]
On the space of Parseval frames, consider the initial value problem
\(\widetilde{\Gamma}(F_0,0) = F_0 \qquad \frac{d}{dt}\widetilde{\Gamma}(F_0,t) = -\operatorname{grad} \operatorname{NP}(\widetilde{\Gamma}(F_0,t))\).
If \(F_0\) is full spark, then \(\lim_{t \to \infty} \widetilde{\Gamma}(F_0,t)\) is an ENP frame.
Definition.
\(A \in \mathbb{C}^{d \times d}\) is normal if \(AA^\ast = A^\ast A\).
Equivalently,
\(0 = AA^\ast - A^\ast A = [A,A^\ast]\).
Define the non-normal energy \(\operatorname{E}:\mathbb{C}^{d \times d} \to \mathbb{R}\) by
\(\operatorname{E}(A) := \|[A,A^\ast]\|^2.\)
Obvious Fact.
The normal matrices are the global minima of \(\operatorname{E}\).
Theorem [with Needham]
The only critical points of \(\operatorname{E}\) are the global minima; i.e., the normal matrices.
\(\operatorname{E}\) is not quasiconvex!
Theorem [with Needham]
The only critical points of \(\operatorname{E}\) are the global minima; i.e., the normal matrices.
Let \(\mathcal{F}: \mathbb{C}^{d \times d} \times \mathbb{R} \to \mathbb{C}^{d \times d}\) be negative gradient descent of \(\operatorname{E}\); i.e.,
\(\mathcal{F}(A_0,0) = A_0 \qquad \frac{d}{dt}\mathcal{F}(A_0,t) = -\nabla \operatorname{E}(\mathcal{F}(A_0,t))\).
Theorem [with Needham]
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0,t)\) exists, is normal, has the same eigenvalues as \(A_0\), and is real if \(A_0\) is.
Define the unbalanced energy \(\operatorname{B}(A) := \|\mathrm{diag}([A,A^\ast])\|^2 = \sum \left(\|A_i\|^2 - \|A^i\|^2\right)^2\).
If \(A = \left(a_{ij}\right)_{i,j} \in \mathbb{R}^{d \times d}\) such that \(\mathrm{diag}([A,A^\ast]) = 0\), then \(\widehat{A} = \left(a_{ij}^2\right)_{i,j}\) is the adjacency matrix of a balanced multigraph.
Let \(\mathscr{F}(A_0,0) = A_0, \frac{d}{dt}\mathscr{F}(A_0,t) = - \nabla \operatorname{B}(\mathscr{F}(A_0,t))\) be negative gradient flow of \(\operatorname{B}\).
Theorem [with Needham]
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathscr{F}(A_0,t)\) exists, is balanced, has the same eigenvalues and principal minors as \(A_0\), and has zero entries wherever \(A_0\) does.
If \(A_0\) is real, so is \(A_\infty\), and if \(A_0\) has all non-negative entries, then so does \(A_\infty\).
Theorem (with Needham)
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathscr{F}(A_0,t)\) exists, is balanced, has the same eigenvalues and principal minors as \(A_0\), and has zero entries whenever \(A_0\) does.
If \(A_0\) is real, so is \(A_\infty\), and if \(A_0\) has all non-negative entries, then so does \(A_\infty\).
Theorem (with Needham)
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathscr{F}(A_0,t)\) exists, is balanced, has the same eigenvalues and principal minors as \(A_0\), and has zero entries whenever \(A_0\) does.
If \(A_0\) is real, so is \(A_\infty\), and if \(A_0\) has all non-negative entries, then so does \(A_\infty\).
Theorem (with Needham)
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathscr{F}(A_0,t)\) exists, is balanced, has the same eigenvalues and principal minors as \(A_0\), and has zero entries whenever \(A_0\) does.
If \(A_0\) is real, so is \(A_\infty\), and if \(A_0\) has all non-negative entries, then so does \(A_\infty\).
Theorem (with Needham)
For any \(A_0 \in \mathbb{C}^{d \times d}\), the matrix \(A_\infty := \lim_{t \to \infty} \mathscr{F}(A_0,t)\) exists, is balanced, has the same eigenvalues and principal minors as \(A_0\), and has zero entries whenever \(A_0\) does.
If \(A_0\) is real, so is \(A_\infty\), and if \(A_0\) has all non-negative entries, then so does \(A_\infty\).
A symplectic manifold is a smooth manifold \(M\) together with a closed, non-degenerate 2-form \(\omega \in \Omega^2(M)\).
Example: \((\mathbb{R}^2,dx \wedge dy) = (\mathbb{C},\frac{i}{2}dz \wedge d\bar{z})\)
\((S^2,d\theta\wedge dz)\)
\((\mathbb{R}^2,dx \wedge dy) = (\mathbb{C},\frac{i}{2}dz \wedge d\bar{z})\)
\((S^2,\omega)\), where \(\omega_p(u,v) = (u \times v) \cdot p\)
\((\mathbb{C}^n, \frac{i}{2} \sum dz_k \wedge d\overline{z}_k)\)
\((\mathbb{C}^{m \times n}, \omega)\) with \(\omega(X_1,X_2) = -\operatorname{Im} \operatorname{trace}(X_1^* X_2)\).
If \(H: M \to \mathbb{R}\) is smooth, then there exists a unique vector field \(X_H\) so that \({dH = \iota_{X_H}\omega}\), i.e.,
(\(X_H\) is called the Hamiltonian vector field for \(H\), or sometimes the symplectic gradient of \(H\))
Example. \(H: (S^2, d\theta\wedge dz) \to \mathbb{R}\) given by \(H(\theta,z) = z\).
\(dH = dz = \iota_{\frac{\partial}{\partial \theta}}(d\theta\wedge dz)\), so \(X_H = \frac{\partial}{\partial \theta}\).
\(H\) is constant on orbits of \(X_H\):
\(\mathcal{L}_{X_H}(H) = dH(X_H)=\omega(X_H,X_H) = 0\)
“Every continuous symmetry has a corresponding conserved quantity”
A circle action on \((M,\omega)\) determines a vector field \(X\) by
\(S^1=U(1)\) acts on \((S^2,d\theta \wedge dz)\) by
So \(X = \frac{\partial}{\partial \theta}\).
Definition. A circle action on \((M,\omega)\) is Hamiltonian if there exists a momentum map
so that \(d\mu = \iota_{X}\omega = \omega(X,\cdot)\), where \(X\) is the vector field generated by the circle action. In other words, \(X = X_\mu\).
\(X = \frac{\partial}{\partial \theta}\)
\(\mu(\theta,z) = z\)
\(\iota_X\omega = \iota_{\frac{\partial}{\partial \theta}} d\theta \wedge dz = (d\theta \wedge dz)\left(\frac{\partial}{\partial \theta},\cdot \right) = dz \)
Suppose \(\mu: (M,\omega) \to \mathfrak{g}^\ast\) is the momentum map of a Hamiltonian \(G\) action.
Define \(\Phi: M \to \mathbb{R}\) by \(\Phi(p) = \|\mu(p)\|^2\).
Frances Kirwan
Gert-Martin Greuel [CC BY-SA 2.0 DE], from Oberwolfach Photo Collection
Image by rawpixel.com on Freepik
Theorem [Kirwan]
Reductive algebraic group action on Kähler manifold \(\Longrightarrow\) semistable points flow to global minima of \(\Phi\) by gradient descent.
This kind of function is really nice!
The GIT quotient consists of group orbits which can be distinguished by \(G\)-invariant (homogeneous) polynomials.
\(\mathbb{C}^* \curvearrowright \mathbb{CP}^2\)
\(t \cdot [z_0:z_1:z_2] = [z_0: tz_1:\frac{1}{t}z_2]\)
Roughly: identify orbits whose closures intersect, throw away orbits on which all \(G\)-invariant polynomials vanish.
\( \mathbb{CP}^2/\!/\,\mathbb{C}^* \cong\mathbb{CP}^1\)
Do similar techniques work for
What other nice configurations are minima of potentials of this form?
Does this machinery tell us anything about the Paulsen problem?
Fusion frame homotopy and tightening fusion frames by gradient descent
Tom Needham and Clayton Shonkwiler
Journal of Fourier Analysis and Applications 29 (2023), no. 4, 51
Three proofs of the Benedetto–Fickus theorem
Dustin Mixon, Tom Needham, Clayton Shonkwiler, and Soledad Villar
Sampling, Approximation, and Signal Analysis (Harmonic Analysis in the Spirit of J. Rowland Higgins), Stephen D. Casey, M. Maurice Dodson, Paulo J. S. G. Ferreira and Ahmed Zayed, eds., Birkhäuser, Cham, 2023, 371–391
Geometric approaches to matrix normalization and graph balancing
Tom Needham and Clayton Shonkwiler
By Clayton Shonkwiler