SensioLabs
@sensiolabs sensiolabs.com
MongoDB
Avancé
Sous titre
@sensiolabs sensiolabs.com
Introduction to Schema Design
SensioLabs
@sensiolabs sensiolabs.com
Introduction
Concepts clés
Flexible schema
Application driven-schema
Rich document
Pre join / Embed document
No mongo join
No constraints
No transactions
Atomicity
SensioLabs
@sensiolabs sensiolabs.com
One to one
relationship
users
{
_id: "joe",
name: "Joe Bookreader"
}
addresses
{
user_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"
}
@sensiolabs sensiolabs.com
One to one
relationship
users
{
_id: "joe",
name: "Joe Bookreader",
address: {
street: "123 Fake Street",
city: "Faketon",
state: "MA"
}
}
SensioLabs
Frequency of access
Document Growth
Atomicity
@sensiolabs sensiolabs.com
One to many relationship
cities
{
name: "Paris",
region: "IDF",
people: [
...
]
}
SensioLabs
Too many people...
@sensiolabs sensiolabs.com
One to many relationship
SensioLabs
Duplication of data = inconsistency
people
{
name: "Joe",
city: {
name: "Paris",
region: "IDF"
}
}
people
{
name: "Jane",
city: {
name: "Paris",
region: "IDF"
}
}
@sensiolabs sensiolabs.com
One to many relationship
SensioLabs
Make sure the city exist (no foreign key)
people
{
name: "Joe",
city: "Paris"
}
cities
{
_id: "Paris",
region: "IDF"
}
Multiple queries
@sensiolabs sensiolabs.com
One to few
relationship
SensioLabs
No data inconsistency
people
{
name: "Joe",
addresses: [
{...},
{...},
{...}
]
}
@sensiolabs sensiolabs.com
One to many / One to few
relationship
SensioLabs
What is the cardinality of the relationship ?
One to many => referencing
One to few => embedding
@sensiolabs sensiolabs.com
SensioLabs
Use multikey indexes for performance
students
{
_id: 0,
name: 'joe',
teachers: [2, 11, 41]
}
teachers
{
_id: 11,
name: 'John',
students: [...]
}
Use reference
Many to many
relationship
@sensiolabs sensiolabs.com
SensioLabs
Find the descendants and the ancestors of a node
Tree structure
Array of ancestors
ancestors: [ "Books", "Programming", "Databases" ]
ancestors: [ "Books", "Programming" ]
ancestors: [ "Books" ]
ancestors: [ ]
@sensiolabs sensiolabs.com
SensioLabs
JSON schema validation since MongoDB 3.6
Schema validation
db.createCollection("students", { validator: { $jsonSchema: { bsonType: "object", required: [ "name", "year", "major", "gpa" ], properties: { name: { bsonType: "string", description: "must be a string and is required" }, ... } } } })
@sensiolabs sensiolabs.com
SensioLabs
MongoDB 4.0 will support Multi-Document ACID Transactions
The futur of MongoDB
Sous titre
@sensiolabs sensiolabs.com
Aggregation
SensioLabs
@sensiolabs sensiolabs.com
Types d'aggregations
Single Purpose Aggregation Operations
Aggregation Pipeline
Map-Reduce
SensioLabs
@sensiolabs sensiolabs.com
Single Purpose Aggregation Operation
count
distinct
SensioLabs
@sensiolabs sensiolabs.com
Exemple
SensioLabs
@sensiolabs sensiolabs.com
Aggregation Pipeline
Un Framework pour effectuer des analyses ou statistiques et générer des rapports pré-agrégés
SensioLabs
@sensiolabs sensiolabs.com
Exemple
SensioLabs
@sensiolabs sensiolabs.com
Map-Reduce
Map Reduce opération sous stéroïde
Limitation à 16MB d'output en BSON
SensioLabs
@sensiolabs sensiolabs.com
Map-Reduce
Redondance et Disponibilité des données
@sensiolabs sensiolabs.com
Replicat Sets
SensioLabs
@sensiolabs sensiolabs.com
Réplication
SensioLabs
@sensiolabs sensiolabs.com
Réplication
Un noeud Primary
Transparent pour le développeur
Toutes les opérations se font par défaut sur le Primary
SensioLabs
@sensiolabs sensiolabs.com
Disponibilité
SensioLabs
@sensiolabs sensiolabs.com
Disponibilité
Si un noeud Primaire ne réponds pas pendant 10s un autre noeud prendra sa place
Election - scrutin majoritaire - pour élire un nouveau noeud primaire
SensioLabs
@sensiolabs sensiolabs.com
Disponibilité - Election
SensioLabs
@sensiolabs sensiolabs.com
Disponibilité - Election
SensioLabs
@sensiolabs sensiolabs.com
Exemple
Distribution des données sur plusieurs machines
@sensiolabs sensiolabs.com
Sharding
SensioLabs
@sensiolabs sensiolabs.com
Pourquoi ?
Vertical Scaling
Horizontal Scaling
- Trop de données (1terra byte)
- Trop d'opération (1million req/s)
SensioLabs
@sensiolabs sensiolabs.com
Sharded Cluster
SensioLabs
@sensiolabs sensiolabs.com
Shard Keys
- Une collection
- Un index simple ou composé
- Champ obligatoire / immutable
- Ne peux pas être changé
- Performance et scalability
SensioLabs
@sensiolabs sensiolabs.com
Chunk
+ Sharded Cluster Balancer
SensioLabs
@sensiolabs sensiolabs.com
Sharding Strategy
- Ranged Sharding
- Hashed Sharding
SensioLabs
@sensiolabs sensiolabs.com
Ranged sharding
SensioLabs
@sensiolabs sensiolabs.com
Ranged sharding
SensioLabs
@sensiolabs sensiolabs.com
Hashed sharding
SensioLabs
@sensiolabs sensiolabs.com
Tips
Mongodb calcule automatiquement le hash dans les requêtes
SensioLabs
@sensiolabs sensiolabs.com
Ranged vs Hashed
SensioLabs
@sensiolabs sensiolabs.com
Ranged vs Hashed
SensioLabs
@sensiolabs sensiolabs.com
Exemple
sh.shardCollection("db.articles", {name: "hashed"})
Sous titre
@sensiolabs sensiolabs.com
Sharding Conclusion
SensioLabs
@sensiolabs sensiolabs.com
Avantages
- Storage Capacity
- Reads / Writes (Load balancing)
- High Availability
SensioLabs
@sensiolabs sensiolabs.com
Inconvénients
- Filtrer les requêtes via la shared key
updateOne(), removeOne(), deleteOne()
- Tous les index doivent être préfixés par la shared key
@sensiolabs sensiolabs.com
Thank you !
MongoDB Avancé
By skigun
MongoDB Avancé
- 301