Title Text

A transverse sinusoidal wave is being generated on a string under constant tension.\text{A transverse sinusoidal wave is being generated on a string under constant tension.}
\text{A transverse sinusoidal wave is being generated on a string under constant tension.}
By what factor is the required power increased if the string is changed to one  with half μ and an amplitude doubled? \text{By what factor is the required power increased if the string is changed to one }\\ \text{ with half }\mu \text{ and an amplitude doubled? }
\text{By what factor is the required power increased if the string is changed to one }\\ \text{ with half }\mu \text{ and an amplitude doubled? }
Pavg=12μvω2ym2\displaystyle P_{\text{avg}}=\frac{1}{2}\mu v \omega^2 y_m^2
\displaystyle P_{\text{avg}}=\frac{1}{2}\mu v \omega^2 y_m^2
Pavg=12μτμω2ym2=12μτω2ym2\displaystyle P_{\text{avg}}=\frac{1}{2}\mu \sqrt{\frac{\tau}{\mu}} \omega^2 y_m^2=\frac{1}{2}\sqrt{\mu} \sqrt{\tau} \omega^2 y_m^2
\displaystyle P_{\text{avg}}=\frac{1}{2}\mu \sqrt{\frac{\tau}{\mu}} \omega^2 y_m^2=\frac{1}{2}\sqrt{\mu} \sqrt{\tau} \omega^2 y_m^2
If we use μ2and amplitude 2ym\displaystyle \text{If we use }\frac{\mu}{2} \text{and amplitude }2y_m
\displaystyle \text{If we use }\frac{\mu}{2} \text{and amplitude }2y_m
Pnew=42Pavg\displaystyle P_\text{new}=\frac{4}{\sqrt{2}}P_\text{avg}
\displaystyle P_\text{new}=\frac{4}{\sqrt{2}}P_\text{avg}
Abel’s theoremW(x)=W(a)eaxP(x)dx\text{Abel's theorem}\\ \displaystyle W(x)=W(a) e^{-\displaystyle\int_a^x P(x) dx}
\text{Abel's theorem}\\ \displaystyle W(x)=W(a) e^{-\displaystyle\int_a^x P(x) dx}

Geogebra test

By smstry

Geogebra test

  • 80