COMP333

Algorithm Theory and Design

 

 

Daniel Sutantyo

Department of Computing

Macquarie University

Lecture slides adapted from lectures given by Frank Cassez, Mark Dras, and Bernard Mans

Summary

  • Algorithm complexity (running time, recursion tree)
  • Algorithm correctness (induction, loop invariants)
  • Problem solving methods:
    • exhaustive search
    • dynamic programming
    • greedy method
    • divide-and-conquer
    • probabilistic method
    • algorithms involving strings
    • algorithms involving graphs
  • Divide the problem into subproblems which are smaller instances of the same problem
  • Conquer the subproblems by solving them recursively, until it is small enough to solve trivially
  • Combine the solutions to the subproblems into a solution for the original problem

Divide and Conquer

  • We have already seen a lot of divide-and-conquer algorithms:
    • remember our discussion about brute force, divide and conquer, and dynamic programming?
       
  • Is binary search a divide-and-conquer algorithm?
     
  • Is linear search a divide-and-conquer algorithm?

Divide and Conquer

  • The focus this week is not about how to write a divide-and-conquer algorithm
    • you already know how to do this
       
  • Our focus is on the analysis of the running time of divide-and-conquer algorithms

Divide and Conquer

  • We characterise the running times of divide-and-conquer algorithms using a recurrence equation (or recurrence)
  • Formally, if \(T(n)\) is the running time of the algorithm:

Divide and Conquer

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le c$}\\ aT(n/b) + D(n) + C(n) &\text{otherwise} \end{cases}\)

where

  • \(D(n)\) is the cost of dividing the problem into subproblems
  • \(C(n)\) is the cost of combining solutions of the subproblems to create a solution for the problem

Linear Search

divide and conquer method

public static int linearSearch(int[] a, int i, int j, int target){
    if (i > j)
        return -1;
    if (a[i] == target)
    	return i;
    return linearSearch(a,i+1,j,target);
}
public static int linearSearch(int[] a, int i, int j, int target){
    if (i > j)
        return -1;
    if (a[i] == target)
    	return i;
    return linearSearch(a,i+1,j,target);
}
public static int linearSearch(int[] a, int i, int j, int target) {
	if (i > j) 
		return -1;
	int m = (i+j)/2;
	if (a[m] == target)
		return m;
	return Math.max(linearSearch(a,i,m-1,target), linearSearch(a,m+1,j,target));
}

Linear Search

divide and conquer method

Linear Search

recursive relation between a problem and its subproblems

linearSearch(a[], 0, 8, target)

linearSearch(a[], 0, 3, target)

linearSearch(a[], 5, 8, target)

linearSearch(a[], i, j, target) = max(

                                                      linearSearch(a[],i,(i+j)/2-1,target),

                                                      linearSearch(a[],(i+j)/2+1,j,target)

                                                    )

Linear Search

recursive relation between a problem and its subproblems

linearSearch(a[], 0, 8, target)

linearSearch(a[], 0, 3, target)

linearSearch(a[], 5, 8, target)

\(n\)

\[\frac{n}{2}\]

\[\frac{n}{2}\]

Linear Search

recurrence

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le c$}\\ aT(n/b) + D(n) + C(n) &\text{otherwise} \end{cases}\)

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 2T(n/2) + \Theta(1)&\text{otherwise} \end{cases}\)

Linear Search

recurrence

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 2T(n/2) + \Theta(1)&\text{otherwise} \end{cases}\)

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 3T(n/3) + \Theta(1)&\text{otherwise} \end{cases}\)

  • If we divide the array into two parts:
  • If we divide the array into three parts:
  • Note that we can be a bit sloppy about the details

Linear Search

recurrence

  • Note that we can be a bit sloppy about the details

A[ 0 .. 8 ] 

A [ 0 .. 3 ]

A [ 5 .. 8 ]

\(n\)

\(\lfloor (n-1)/2 \rfloor \)

\(\lfloor n/2 \rfloor \)

Linear Search

recurrence

  • We will keep it simple!

\(n\)

\[\frac{n}{2}\]

\[\frac{n}{2}\]

\(n\)

\[\frac{n}{3}\]

\[\frac{n}{3}\]

\[\frac{n}{3}\]

Divide and Conquer

solving recurrence to obtain bound for time complexity

  • Once we have the recurrence equation, we can work out the running time of the code
     
  • Remember, our goal is to find the asymptotic notation for \(T(n)\)
    • e.g. \(T(n) = O(g(n))\)
    • have to show \(T(n) \le c\cdot g(n)\) for \(c > 0, n > n_0 >0\)

Divide and Conquer

solving recurrence to obtain bound for time complexity

  • There are three main methods for obtaining the asymptotic running time:
    • using master method
    • using substitution method
    • using a recursion tree
  • You need to understand all three methods
    • if an exam question asks you to derive the algorithm running time using the substitution method, then you cannot just use the master theorem

Master method

master theorem

  • The master theorem is a formula the describes the running time of some divide-and-conquer algorithms
    • The algorithm must be of the form
      • \(T(n) = aT(n/b) + f(n)\)
    • where \(a \ge 1\), \(b > 1\), and \(f(n) > 0\)
  • First presented by Bentley, Haken, and Saxe in 1980
    • the term 'master theorem' was popularised by CLRS
    • there is a proof in CLRS, but we won't go through it

Master method

master theorem

Given a recurrence of the form

\(T(n) = aT(n/b) + f(n) \)

  • if \(f(n) = O(n^{\log_b a-\epsilon})\) for some constant \(\epsilon > 0\) then
    • \(T(n) =\Theta(n^{\log_b a})\)
  • if \(f(n) = \Theta(n^{\log_b a})\) then
    • \(T(n) = \Theta(n^{\log_b a}\log n)\)
  • if \(f(n) = \Omega(n^{\log_b a + \epsilon})\) for some constant \(\epsilon > 0\), and if \(a f(n/b) \le cf(n)\) for some \(c < 1\) then
    • \(T(n) = \Theta(f(n))\)

\(T(n) = aT(n/b) + f(n) \)

\(f(n) = O(n^{\log_b a-\epsilon})\)

\(f(n) = \Theta(n^{\log_b a})\)

\(f(n) = \Omega(n^{\log_b a + \epsilon})\)

\(T(n) = aT(n/b) + cn^k \)

So we can write \(f(n) = cn^k\)

Master method

master theorem (simplification)

Master method

master theorem (simplification)

\(T(n) = aT(n/b) + cn^k \)

  • if \(f(n) = O(n^{\log_b a-\epsilon})\) for some constant \(\epsilon > 0\)
    • i.e. 

\( k = \log_b a - \epsilon\)

\( b^k =  a - b^\epsilon\)

(take both sides to the power of \(b\))

\(b^k < a\)

in other words:

Master method

master theorem (simplification)

  • Given a recurrence of the form \(T(n) = aT(n/b) + f(n) \)
  • if \(f(n) = O(n^{\log_b a-\epsilon})\) for some constant \(\epsilon > 0\)
    • \(T(n) =\Theta(n^{\log_b a})\)
  • Given a recurrence of the form \(T(n) = aT(n/b) + cn^k \) whenever \(n\) is a power of \(b\)
  • if \(b^k < a\) for some constant \(\epsilon > 0\)
    • \(T(n) =\Theta(n^{\log_b a})\)

Master method

linear search

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 2T(n/2) + \Theta(1)&\text{otherwise} \end{cases}\)

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 3T(n/3) + \Theta(1)&\text{otherwise} \end{cases}\)

  • Linear search, divide into two parts:
  • Linear search, divide into three parts:

Master method

linear search

  • Given a recurrence of the form \(T(n) = aT(n/b) + cn^k \) whenever \(n\) is a power of \(b\)
    • we have \(T(n) = 2T(n/2) + \Theta(1)\)
  • if \(b^k < a\) for some constant \(\epsilon > 0\)
    • we have \(k = 0, b=2, a=2\), so \(b^0 < a\)
  • then \(T(n) =\Theta(n^{\log_b a})\)
    • we have \(T(n) = \Theta(n)\)

Master method

linear search

  • Given a recurrence of the form \(T(n) = aT(n/b) + cn^k \) whenever \(n\) is a power of \(b\)
    • we have \(T(n) = 3T(n/3) + \Theta(1)\)
  • if \(b^k < a\) for some constant \(\epsilon > 0\)
    • we have \(k = 0, b=3, a=3\), so \(b^0 < a\)
  • then \(T(n) =\Theta(n^{\log_b a})\)
    • we have \(T(n) = \Theta(n)\)

Master method

master theorem (simplification)

\(T(n) = aT(n/b) + cn^k \)

  • if \(f(n) = O(n^{\log_b a})\)
    • i.e. \(k = \log_b a \quad\rightarrow\quad b^k = a\)
  • then you have \(T(n) = \Theta(n^{\log_b a}\log n) = \Theta(n^{k}\log n)\)
  • if \(f(n) = O(n^{\log_b a+\epsilon})\)
    • i.e. \(k > \log_b a \quad\rightarrow\quad b^k > a\)
  • then you have \(T(n) = \Theta(f(n)) = \Theta(n^{k})\)

Master method

master theorem (simplification)

\[T(n)=\begin{cases}​\Theta(n^{\log_b a}),&\text{if $f(n) = O(n^{\log_b a - \epsilon})$ for $\epsilon > 0$}\\\Theta(n^{\log_ba}\log n),&\text{if $f(n)=\Theta(n^{\log_b a})$}\\\Theta(f(n)),&\text{if $f(n) = \Omega(n^{\log_ba+\epsilon})$ for $\epsilon > 0$}\end{cases}\]

\[T(n) = aT(n/b) + f(n) \]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

\[T(n) = aT(n/b) + cn^k \]

Master method

examples

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 2T(n/2) + \Theta(n)&\text{otherwise} \end{cases}\)

\(a = 2, b = 2, k = 1 \quad\rightarrow\quad T(n) = \Theta(n\log n)\)

Master method

examples

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ T(n/2) + \Theta(1)&\text{otherwise} \end{cases}\)

\(a = 1, b = 2, k = 0 \quad\rightarrow\quad T(n) = \Theta(\log n)\)

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

Master method

examples

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 4T(n/2) + \Theta(n)&\text{otherwise} \end{cases}\)

\(a = 4, b = 2, k = 1 \quad\rightarrow\quad T(n) = \Theta(n^{2})\)

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

Master method

examples

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 3T(n/2) + \Theta(n)&\text{otherwise} \end{cases}\)

\(a = 3, b = 2, k = 1 \quad\rightarrow\quad T(n) = \Theta(n^{\log_2 3})\)

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

Master method

examples

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ T(n/2) + \Theta(n)&\text{otherwise} \end{cases}\)

\(a = 1, b = 2, k = 1 \quad\rightarrow\quad T(n) = \Theta(n)\)

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

Master method

  • Master method can only be applied to recurrences of a specific form
    • however, most algorithms you encounter in 333 is going to have this form (and probably most algorithms you encounter in life)
  • You can use master method to get some idea on the complexity of the algorithm
  • However, if you are asked to use ANOTHER method in a question, then DO NOT USE the master method (although you can cheat a bit: use master method as a guide to tell you what the answer is)

Recursion-Tree Method

  • To find the time complexity of an algorithm we can draw the recursion tree

Recursion-Tree Method

  • The recursion-tree method has the following steps:
    1. draw the tree until you can see a pattern (2-3 levels should be enough)
    2. determine the number of operations on each level
    3. determine the height of the tree
    4. hence determine the total number of operation:
      • height of tree \(\times\) number of operation on each level

Recursion-Tree Method

  • The recursion-tree method has the following steps:
    • draw the tree until you can see a pattern (2-3 levels should be enough)
    • count the number of operations on each level
    • determine the height of the tree
    • hence determine the total number of operation:
      • height of tree \(\times\) number of operation on each level

Recursion-Tree Method

example: merge sort

\[T(n) = 2T(n/2) + \Theta(n)\]

  • assume \(n\) is a power of 2 to simplify the discussion
  • assume we are doing \(cn\) operations on each recursion
  • assume we are doing 1 operation at the leaves

\(T(n) = \begin{cases} \Theta(1) &\text{if $n = 1$}\\ 2T(n/2) + cn &\text{if $n > 1$} \end{cases}\)

Recursion-Tree Method

step 1: draw the tree

\(T(n) = \begin{cases} \Theta(1) &\text{if $n = 1$}\\ 2T(n/2) + cn &\text{if $n > 1$} \end{cases}\)

\(cn\)

\[\frac{cn}{2}\]

\[\frac{cn}{2}\]

Recursion-Tree Method

step 1: draw the tree

\(cn\)

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

1

1

\[\frac{cn}{4}\]

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

. . .

Recursion-Tree Method

step 2: count the number of operations on each level

\(cn\)

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

1

1

\[\frac{cn}{4}\]

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

1

1

1

1

. . .

1

1

1

1

. . .

\[n\]

\[n\]

\[n\]

\[n\]

Recursion-Tree Method

step 3: determine the height of the tree

\(cn\)

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

1

1

\[\frac{cn}{4}\]

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

1

1

1

1

. . .

1

1

1

1

. . .

\[n\]

\[n\]

\[n\]

\[n\]

Recursion-Tree Method

step 3: determine the height of the tree

  • On each level we divide the problem size by 2
  • The subproblem sizes:
    • \(n \quad\rightarrow \quad n/2 \quad\rightarrow\quad n/4 \quad\rightarrow\quad\cdots\quad\rightarrow\quad n/2^i\)
  • The final level is when \(n /2^i = 1\)
    • i.e. when \(2^i = n \quad\rightarrow\quad i = \log_2n\)
  • Level \(i\) has \(2^i\) nodes, so the final level has \(2^{\log_2 n}\) nodes = \(n\) nodes (as we expected)

Recursion-Tree Method

step 4: determine the total number of operations

  • Number of levels: \(\log_2 n\)
  • Number of operations on each level: \(n\)
  • Total number of operations: \(n \log n\)

\(T(n) = O(n \log n)\)

Recursion-Tree Method

example: linear search

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 2T(n/2) + \Theta(1)&\text{otherwise} \end{cases}\)

  • assume \(n\) is a power of 2 to simplify the discussion
  • assume we are doing 1 operation at each node

Recursion-Tree Method

example: linear search

\(cn\)

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

1

1

\[\frac{cn}{4}\]

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

1

1

1

1

. . .

1

1

1

1

. . .

\[n\]

\[n\]

\[n\]

\[n\]

Recursion-Tree Method

example: linear search

\(1\)

1

1

1

1

1

1

1

1

1

1

1

1

. . .

1

1

1

1

. . .

\[4\]

\[2\]

\[1\]

\[???\]

Recursion-Tree Method

example: linear search

  • As  before, the final level is when \(n /2^i = 1\)
    • i.e. when \(2^i = n \quad\rightarrow\quad i = \log_2n\)
  • Level \(i\) has \(2^i\) nodes, so the final level has \(2^{\log_2 n}\) nodes = \(n\) nodes
  • Note that we are being a bit sloppy here: you will not get a nice balanced tree if \(n\) is not a power of 2

Recursion-Tree Method

example: linear search

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

1

1

1

1

. . .

\[4\]

\[2\]

\[1\]

\[2^{\log_2 n} = n\]

Recursion-Tree Method

example: linear search

  • To find the total number of operation, we need to find the sum of

\[ 1 + 2 + 4 + \cdots + n \]

\[ = 2^0 + 2^1 + 2^2 + \cdots + 2^{\log_2 n} \]

\[ = \sum_{k=0}^{\log_2 n} 2^k \]

  • We need the formula for geometric series
    • see CLRS Appendix A

 

\[\sum_{k=0}^m x^k = 1 + x + x^2 + \cdots + x^m = \frac{x^{m+1}-1}{x-1}\]

Recursion-Tree Method

example: linear search

 

\[\sum_{k=0}^{\log_2 n} x^k = 1 + 2 + 2^2 + \cdots + 2^{\log_2 n}= \frac{2^{\log_2 n+1}-1}{2-1} = 2n - 1\]

 

\[\sum_{k=0}^m x^k = 1 + x + x^2 + \cdots + x^m = \frac{x^{m+1}-1}{x-1}\]

from here we can see that linear search is \(O(n)\)

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\ 3T(n/3) + \Theta(1)&\text{otherwise} \end{cases}\)

  • assume \(n\) is a power of 3 to simplify the discussion
  • assume we are doing 1 operation at each node

Recursion-Tree Method

example: linear search (3 partitions)

Recursion-Tree Method

example: linear search (3 partitions)

1

1

1

1

1

1

1

. . .

. . .

\[9\]

\[3\]

\[1\]

\[3^{\log_3 n} = n\]

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

  • To find the total number of operation, we need to find the sum of

\[ 1 + 3 + 9 + \cdots + n \]

\[ = 3^0 + 3^1 + 3^2 + \cdots + 3^{\log_3 n} \]

\[ = \sum_{k=0}^{\log_3 n} 3^k \]

  • Another geometric series:

 

\[\sum_{k=0}^m x^k = 1 + x + x^2 + \cdots + x^k = \frac{x^{m+1}-1}{x-1}\]

Recursion-Tree Method

example: linear search (3 partitions)

 

\[\sum_{k=0}^{\log_2 n} x^k = 1 + 3 + 3^2 + \cdots + 3^n = \frac{3^{\log_3 n+1}-1}{3-1} = \frac{3n-1}{2}\]

 

\[\sum_{k=0}^m x^k = 1 + x + x^2 + \cdots + x^k = \frac{x^{m+1}-1}{x-1}\]

and this version of linear search is also \(O(n)\), as expected

Recursion-Tree Method

example: linear search (3 partitions)

Recursion-Tree Method

another example

\[T(n) = 3T(n/4) + \Theta(n^2)\]

  • assume \(n\) is a power of 4 to simplify the discussion
  • assume we are doing \(cn^2\) operations on each recursion

\(T(n) = \begin{cases} \Theta(1) &\text{if $n = 1$}\\ 3T(n/4) + cn^2 &\text{if $n > 1$} \end{cases}\)

\(T(n) = \begin{cases} \Theta(1) &\text{if $n = 1$}\\ 3T(n/4) + cn^2 &\text{if $n > 1$} \end{cases}\)

\(cn^2\)

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

Recursion-Tree Method

step 1: draw the tree

Recursion-Tree Method

step 1: draw the tree

\(cn^2\)

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

1

1

1

1

. . . . . . . . . . . . . . . . . . . . .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

\(cn^2\)

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

1

1

1

. . . . . . . . . . . . . . . . . . . . .

1

1

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

1

1

1

1

1

1

\(cn^2\)

\[\frac{3}{16}cn^2\]

\[\frac{9}{256}cn^2\]

???

Recursion-Tree Method

step 2: count number of operations on each level

Recursion-Tree Method

step 3: determine the height of the tree

  • On each level we divide the problem size by 4
  • The subproblem sizes:
    • \(n \quad\rightarrow \quad n/4 \quad\rightarrow\quad n/16 \quad\rightarrow\quad\cdots\quad\rightarrow\quad n/4^i\)
  • The final level is when \(n /4^i = 1\)
    • i.e. when \(4^i = n \quad\rightarrow\quad i = \log_4 n\)
  • Level \(i\) has \(3^i\) nodes, so the final level has \(3^{\log_4 n}\) nodes

\(cn^2\)

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{16}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

1

1

1

. . . . . . . . . . . . . . . . . . . . .

1

1

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

\[\frac{cn^2}{256}\]

1

1

1

1

1

1

\(cn^2\)

\[\frac{3}{16}cn^2\]

\[\frac{9}{256}cn^2\]

\(3^{\log_4 n}\)

Recursion-Tree Method

step 3: determine the height of the tree

Recursion-Tree Method

step 4: determine the total number of operations

  • Finding the total number of operations is not that simple
    • you need to find the sum the number of operations on each level:

\[cn^2 + \frac{3}{16}cn^2 + \frac{9}{256}cn^2+\cdots+ 3^{\log_4 n}\]

\[cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2cn^2+\cdots+ \left(\frac{3}{16}\right) ^{\log_4 n - 1}cn^2+ 3^{\log_4 n}\]

\[\left(\frac{3}{16}\right)^i\]

each term has 

\(i\) goes from 0 to \(\log_4 n - 1\)

  • We need to use the sum to the geometric progression formula again:

 

\[\sum_{k=0}^n x^k = 1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}\]

\[cn^2 + \frac{3}{16}cn^2 + \left(\frac{3}{16}\right)^2cn^2+\cdots+ \left(\frac{3}{16}\right) ^{\log_4 n - 1}cn^2+ 3^{\log_4 n}\]

\[cn^2\sum_{i=0}^{\log_4n-1}\left(\frac{3}{16}\right)^i+ 3^{\log_4 n}\]

\[= \frac{(3/16)^{\log_4 n}-1}{(3/16)-1}cn^2+ 3^{\log_4 n}\]

Recursion-Tree Method

step 4: determine the total number of operations

 

\[\sum_{k=0}^\infty x^k = \frac{1}{1-x}\]

  • this is ugly ...
  • but here we can be a bit sloppy again:
    • use geometric sum of an infinite series, with \(|x| < 1\)

\[cn^2\sum_{i=0}^{\log_4n-1}\left(\frac{3}{16}\right)^i + 3^{\log_4 n}\]

\[= \frac{(3/16)^{\log_4 n}-1}{(3/16)-1}cn^2+ 3^{\log_4 n}\]

Recursion-Tree Method

step 4: determine the total number of operations

\[\sum_{k=0}^n x^k <\sum_{k=0}^\infty x^k = \frac{1}{1-x}\]

  • therefore

\[\sum_{i=0}^{\log_4n-1}\left(\frac{3}{16}\right)^i cn^2+ 3^{\log_4 n}\]

Recursion-Tree Method

step 4: determine the total number of operations

  • if \(|x| < 1\) and each term is positive:

\[< \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^i cn^2+ 3^{\log_4 n}\]

\[=\frac{1}{1-(3/16)} cn^2+ 3^{\log_4 n}\]

Recursion-Tree Method

step 4: determine the total number of operations

\[\frac{1}{1-(3/16)} cn^2+ 3^{\log_4 n} = \frac{16}{13}cn^2 + 3^{\log_4 n}\]

  • One more rule that may be useful:
  • Hence:

\[ 3^{\log_4 n} = n^{\log_4 3}\]

\[T(n) \le \frac{16}{13}cn^2 + n^{\log_43}\]

\[T(n) = O(n^2)\]

Recursion-Tree Method

using master method

\(T(n) = \begin{cases} \Theta(1) &\text{if $n \le 1$}\\3 T(n/4) + \Theta(n^2)&\text{otherwise} \end{cases}\)

\(a = 3, b = 4, k = 2 \quad\rightarrow\quad T(n) = \Theta(n^2)\)

\[T(n) = aT(n/b) + cn^k\]

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

Substitution Method

  • The substitution method has two steps:
    • Guess the time complexity
    • Use mathematical induction to find the constants and show that the time complexity we guessed is correct

Substitution Method

example

\(T(n) = \begin{cases} 1 &\text{if $n \le 1$}\\ 2T(\lfloor n/2\rfloor) + n&\text{otherwise} \end{cases}\)

  • Assume integer division, i.e. \(\lfloor n/2\rfloor\)
  • Step 1: Guess a solution
    • draw the recursion tree and estimate the number of operations
    • try different bounds and see which one works (e.g. try \(n^2\), then \(n\), then \(n \log n\)
    • gain experience: as you learn more algorithms, you can have a good feel on an algorithm's complexity

Substitution Method

example

  • Guess: \(T(n) = O(n\log n)\) (use log base 2 this time)
  • Step 2: use induction to prove the correctness of our guess

\(T(n) = \begin{cases} 1 &\text{if $n \le 1$}\\ 2T(\lfloor n/2\rfloor) + n&\text{otherwise} \end{cases}\)

Substitution Method

example

  • Guess: \(T(n) = O(n\log n)\)
  • Step 2: use induction to prove the correctness of our guess
  • Prove: \(T(n) = O(n\log n)\)
    • i.e. prove there exists \(c > 0\) and \(n_0 > 0\) such that \(T(n) \le cn\log n\) for all \(n > n_0\)

\(T(n) = \begin{cases} 1 &\text{if $n \le 1$}\\ 2T(\lfloor n/2\rfloor) + n&\text{otherwise} \end{cases}\)

Substitution Method

example

  • Prove \(T(n) \le cn\log n\) for all \(n > n_0\) for some \(c > 0\) and \(n_0 > 0\)
  • Base case: \(n = 1\)
    • LHS:\(T(1) = 1\)
    • RHS: \(cn\log n = c * \log 1 = 0\)

Substitution Method

example

  • Prove \(T(n) \le cn\log n\) for all \(n > n_0\) for some \(c > 0\) and \(n_0 > 0\)
  • We don't have to start from 1!
  • Base case:
    • \(n = 2\)
      • LHS: \(T(2) = 2*T(1)+2 = 4\)
      • RHS: \(cn\log n =2c * \log 2\)
    • \(n = 3\)
      • LHS: \(T(3) = 2*T(1)+3 = 5\)
      • RHS: \(cn\log n =3c * \log 3\)

Substitution Method

example

  • \(n = 4\)
    • LHS: \(T(4) = 2*T(2)+4 = 12\)
    • RHS: \(cn\log n =4c * \log 4\)
  • \(n = 5\)
    • LHS: \(T(5) = 2*T(2)+5 = 13\)
    • RHS: \(cn\log n =5c * \log 5\)
  • \(n = 6\)
    • LHS: \(T(6) = 2*T(3)+6 = 16\)
    • RHS: \(cn\log n =6c * \log 6\)

Substitution Method

example

  • Prove \(T(n) \le cn\log n\) for all \(n > n_0\) for some \(c > 0\) and \(n_0 > 0\)
  • Base case:
    • \(n = 2\)
      • LHS: \(T(2) = 2*T(1)+2 = 4\)
      • RHS: \(cn\log n =2c * \log 2\)
    • \(n = 3\)
      • LHS: \(T(3) = 2*T(1)+3 = 5\)
      • RHS: \(cn\log n =3c * \log 3\)
    • True for \(c \ge 2\) (we are using log base 2)

Substitution Method

example

  • Prove \(T(n) \le cn\log n\) for all \(n > n_0\) for some \(c > 0\) and \(n_0 > 0\)
  • Induction step:
    • Induction hypothesis: assume \(T(k) \le ck\log k\) for some \(k > 1\)
    • Prove: \(T(2k)\le 2ck\log 2k\)

\(T(2k) = 2*T(k) + 2k\)

\(\le 2ck\log k + 2k\)

(from the recurrence)

(from the induction hypothesis)

\(\le 2ck\log 2k + 2k\)

Substitution Method

example

\(T(2k)\le 2ck\log 2k + 2k\)

\(T(2k) \le 2ck\log 2k\)

  • we can prove that:
  • but this not the same as proving:
  • because it could be the case that
    • \(2ck\log 2k \le T(2k) \le 2ck\log 2k + 2k\)

Substitution Method

example

  • Prove \(T(n) \le cn\log n\) for all \(n > n_0\) for some \(c > 0\) and \(n_0 > 0\)
  • Induction step:
    • Induction hypothesis: assume \(T(\lfloor k/2\rfloor) \le c(\lfloor k/2 \rfloor)\log (\lfloor k/2\rfloor)\) for some \(k > 3\)
    • Prove: \(T(k)\le ck\log k\)

\(T(k) = 2T(\lfloor k/2 \rfloor) + k \)

\(\le c(\lfloor k/2 \rfloor )\log(\lfloor k/2\rfloor) + k \)

\(\le ck\log(k/2 ) + k\)

\(= ck\log k - ck\log 2 + k\)

\(\le ck\log k\)

Substitution Method

example

\(T(k) = 2T(k/2) + k \)

  • The proof works this time because \(ck\log_2 2  = ck > k\) as long as \(c > 1\)
    • and we used \(c \ge 2\)

\(\le c(\lfloor k/2 \rfloor )\log(\lfloor k/2\rfloor) + k \)

\(\le ck\log(k/2 ) + k\)

\(= ck\log k - ck\log 2 + k\)

\(\le ck\log k\)

Substitution Method

final words

  • Remember that if you have the wrong induction hypothesis, then you will end up with a wrong proof
    • what would happen if you guessed \(O(n)\) in the previous example?
  • Be careful of the pitfall mentioned:
    • \(T(n) \le cn + d \quad\rightarrow\quad T(n) = O(n)\)?
  • Read CLRS page 85-86 for more discussion on this

Integer Multiplication

\(x = x_1B^m + x_0\)

\(y = y_1B^m + y_0\)

\(x_0 < B^m\)

\(y_0 < B^m\)

\(xy = (x_1B^m + x_0)(y_1B^m+y_0)\)

\(= (x_1y_1)B^{2m} + (x_1y_0+x_0y_1)B^m + x_0y_0\)

Integer Multiplication

\(x = x_1B^m + x_0\)

\(y = y_1B^m + y_0\)

\(xy = (x_1y_1)B^{2m} + (x_1y_0+x_0y_1)B^m + x_0y_0\)

\(12345678 = 1234*10^4 + 5678\)

\(87654321 = 8765*10^4 + 4321\)

\(\begin{aligned}12345678 * 87654321 =\ &(1234*8765)10^{8}\\ &+ (1234*4321+5678*8765)10^4  \\&+ (5678*4321)\end{aligned}\)

Integer Multiplication

\(\text{mul}(1234,8765)\)

\(\text{mul}(12345678,87654321)\)

\(\begin{aligned}12345678 * 87654321 =\ &(1234*8765)10^{8}\\ &+ (1234*4321+5678*8765)10^4  \\&+ (5678*4321)\end{aligned}\)

\(\text{mul}(5678*8765)\)

\(\text{mul}(1234*4321)\)

\(\text{mul}(5678*4321)\)

Integer Multiplication

\(\text{mul}(1234,8765)\)

\(\text{mul}(12345678,87654321)\)

\(\text{mul}(5678,8765)\)

\(\text{mul}(1234,4321)\)

\(\text{mul}(5678,4321)\)

\(\text{mul}(12,87)\)

\(\text{mul}(12,65)\)

\(\text{mul}(34,87)\)

\(\text{mul}(34,65)\)

\(\text{mul}(1,8)\)

\(\text{mul}(1,7)\)

\(\text{mul}(2,8)\)

\(\text{mul}(2,7)\)

  • we can use precomputation to speed this up
  • in reality, we will be doing this in base 2, and multiplying by the base is 'free'

Integer Multiplication

recurrence equation

\(x = x_1B^m + x_0\)

\(y = y_1B^m + y_0\)

\(xy = (x_1y_1)B^{2m} + (x_1y_0+x_0y_1)B^m + x_0y_0\)

\(T(n) = \begin{cases} O(1) &\text{if $n \le 1$}\\ 4T(n/2) + O(n) &\text{otherwise} \end{cases}\)

Integer Multiplication

master method

\(T(n) = \begin{cases} 1&\text{if $n \le 1$}\\ 4T(n/2) +cn &\text{otherwise} \end{cases}\)

\[T(n)=\begin{cases}​\Theta(n^{\log_ba}),&\text{if $a > b^k$ }\\\Theta(n^{\log_ba}\log n),&\text{if $a = b^k$}\\\Theta(n^k),&\text{if $a < b^k$}\end{cases}\]

\(a = 4, b = 2, k = 1 \quad \rightarrow \quad  T(n) = \Theta(n^2)\)

Integer Multiplication

recursion tree method

\[cn\]

\[\frac{cn}{2}\]

\[\frac{cn}{2}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{2}\]

\[\frac{cn}{2}\]

\[\frac{4cn}{2} = 2cn\]

\[cn\]

  • The number of operation: 
  • The final level is when \(i = \log_2 n\)
  • \(T(n) = cn(1 + 2 + 4 + \cdots + 2^{\log_2 n}) =cn(2n-1) = O(n^2)\) 

\[\frac{16cn}{4} = 4cn\]

\[\frac{4^icn}{2^i} = 2^icn\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

\[\frac{cn}{4}\]

Integer Multiplication

substitution method

  • Guess: \(T(n) = O(n^2)\)
    • we want to prove that  \(T(n) \le cn^2\) for some \(c >0, n \ge n_0 > 0\)
  • Base case: \(n = 1 \quad\rightarrow\quad T(1) = 1 \le 1^2\), so \(T(n) \le n^2\) 
  • Induction step: 
    • Induction hypothesis: we assume \(T(k/2) \le ck^2/4\)  for \(k > 1\)

\(T(k) = 4T(k/2) + ck\)

\(\le 4ck^2/4 + ck = ck^2 + ck\)

\(T(k) = O(k^2)\)

Integer Multiplication

substitution method

  • One more time:
    • you can say \(T(k) = O(k^2)\) if \(T(k) \le ck^2\),
      • but we only showed that \(T(k) \le ck^2 + ck\)
      • it could the case that
        • \(ck^2 < T(k) \le ck^2 + ck\)
    • so don't try to show that \(T(n) \le cn^2\)
      • instead we try to prove that \(T(n) \le cn^2 - n\)
      • if \(T(n) \le cn^2 -n\) we still have \(T(n) = O(n^2)\)
        • i.e. we subtract lower order term

Integer Multiplication

substitution method

  • Guess: \(T(n) = O(n^2)\)
    • we want to prove that  \(T(n) \le cn^2-n\) for some \(c >0, n \ge n_0 > 0\)
  • Base case:
    • \(n = 1\) : \(T(1) = 1 \le 2 - 1\) ,
    • thus when \(n=1\), \(T(n) \le cn^2-n\) for \(c \ge 2\) 
  • Induction step:
    • induction hypothesis: assume \(T(k/2) \le ck^2/4-k/2\)
    • proof:

\(T(k) = 4T(k/2) + ck\)

\(\le 4(ck^2/4-k/2) + ck\)

\(\le ck^2 -2k + ck\)

\(\le ck^2\)

(from recurrence)

(from induction hypothesis)

(if \(c \le 2\))

COMP333 Algorithm Theory and Design - W6 2019 - Divide and Conquer

By Daniel Sutantyo

COMP333 Algorithm Theory and Design - W6 2019 - Divide and Conquer

Lecture notes for Week 6 of COMP333, 2019, Macquarie University

  • 193