solike:
Cobaya-compatible likelihoods for SO
Simple templates for custom cobaya-compatible likelihoods
Template for multi-Gaussian likelihood with cross covariances
Implementing cluster-count likelihood according to Poisson template
(in progress, with Nick)
Next?
likelihood:
solike.SimulatedLensingLikelihood:
sim_number: 1
theory:
classy:
extra_args:
output: lCl, tCl
params:
n_s:
prior:
min: 0.8
max: 1.2
model.yaml
from cobaya.yaml import yaml_load_file
from cobaya.model import get_model
info = yaml_load_file('model.yaml')
model = get_model(info)
model.loglikes({'n_s': 0.965})[0]
Initialize a model, compute a likelihood
cobaya.likelihood.Likelihood
solike.GaussianLikelihood
solike.ps.PSLikelihood
solike.lensing.LensingLikelihood
solike.lensing.SimulatedLensingLikelihood
solike.ps.BinnedPSLikelihood
import os
from pkg_resources import resource_filename
from .ps import BinnedPSLikelihood
class LensingLikelihood(BinnedPSLikelihood):
class_options = {"kind": "pp"}
class SimulatedLensingLikelihood(LensingLikelihood):
class_options = {
"dataroot": resource_filename(
"solike", "data/simulated_clkk_SO_Apr17_mv_nlkk_deproj0_SENS1_fsky_16000_iterOn_20191109"
),
"cl_file": "simulated_clkk_SO_Apr17_mv_nlkk_deproj0_SENS1_fsky_16000_iterOn_20191109_sim_{:02d}_bandpowers.txt",
"cov_file": "simulated_clkk_SO_Apr17_mv_nlkk_deproj0_SENS1_fsky_16000_iterOn_20191109_binned_covmat.txt",
"sim_number": 0,
}
def initialize(self):
self.datapath = os.path.join(self.dataroot, self.cl_file.format(self.sim_number))
self.covpath = os.path.join(self.dataroot, self.cov_file)
super().initialize()
solike/lensing.py
import numpy as np
from .utils import binner
from .gaussian import GaussianLikelihood
class PSLikelihood(GaussianLikelihood):
class_options = {"name": "TT", "kind": "tt", "lmax": 6000}
def get_requirements(self):
return {"Cl": {self.kind: self.lmax}}
def _get_Cl(self):
return self.theory.get_Cl(ell_factor=True)
def _get_theory(self, **params_values):
cl_theory = self.get_Cl()
return cl_theory[self.kind]
class BinnedPSLikelihood(PSLikelihood):
def _get_data(self):
lefts, rights, bandpowers = np.loadtxt(self.datapath,
unpack=True)
bin_centers = (lefts + rights) / 2
self.bin_edges = np.append(lefts, [rights[-1]])
return bin_centers, bandpowers
def _get_theory(self, **params_values):
cl_theory = self._get_Cl()
_, theory = binner(cl_theory["ell"],
cl_theory[self.kind],
self.bin_edges)
return theory
solike.ps.BinnedPSLikelihood
solike.lensing.SimulatedLensingLikelihood
solike.lensing.LensingLikelihood
solike.ps.PSLikelihood
solike.GaussianLikelihood
cobaya.likelihood.Likelihood
solike/ps.py
(utility function from Mat M.)
method called by cobaya
import numpy as np
from cobaya.likelihood import Likelihood
from .gaussian_data import GaussianData
class GaussianLikelihood(Likelihood):
class_options = {
"name": "Gaussian",
"datapath": None,
"covpath": None,
}
def initialize(self):
x, y = self._get_data()
cov = self._get_cov()
self.data = GaussianData(self.name, x, y, cov)
def _get_data(self):
x, y = np.loadtxt(self.datapath, unpack=True)
return x, y
def _get_cov(self):
cov = np.loadtxt(self.covpath)
return cov
def _get_theory(self, **kwargs):
raise NotImplementedError
def logp(self, **params_values):
theory = self._get_theory(**params_values)
return self.data.loglike(theory)
cobaya.likelihood.Likelihood
solike.GaussianLikelihood
solike.ps.PSLikelihood
solike.lensing.LensingLikelihood
solike.lensing.SimulatedLensingLikelihood
solike.ps.BinnedPSLikelihood
solike/gaussian.py
import holoviews as hv
from scipy.linalg import cholesky, LinAlgError
def multivariate_normal_logpdf(theory, data, cov, inv_cov, log_det):
const = np.log(2 * np.pi) * (-len(data) / 2) + log_det * (-1 / 2)
delta = data - theory
return -0.5 * np.dot(delta, inv_cov.dot(delta)) + const
class GaussianData(object):
"""Named multivariate gaussian data
"""
def __init__(self, name, x, y, cov):
self.name = str(name)
if not (len(x) == len(y) and cov.shape == (len(x), len(x))):
raise ValueError(f"Incompatible shapes! x={x.shape}, y={y.shape}, cov={cov.shape}")
self.x = x
self.y = y
self.cov = cov
try:
self.cholesky = cholesky(cov)
except LinAlgError:
raise ValueError("Covariance is not SPD!")
self.inv_cov = np.linalg.inv(self.cov)
self.log_det = np.linalg.slogdet(self.cov)[1]
def __len__(self):
return len(self.x)
def loglike(self, theory):
return multivariate_normal_logpdf(theory, self.y, self.cov, self.inv_cov, self.log_det)
solike/gaussian_data.py
import numpy as np
import pandas as pd
class PoissonData(object):
"""Poisson-process-generated data.
Parameters
----------
catalog : pd.DataFrame
Catalog of observed data.
columns : list
Columns of catalog relevant for computing poisson rate.
"""
def __init__(self, name, catalog, columns):
self.name = str(name)
self.catalog = pd.DataFrame(catalog)[columns]
self.columns = columns
def __len__(self):
return len(self.catalog)
def loglike(self, rate_fn, n_expected):
"""Computes log-likelihood of data under poisson process model
rate_fn returns a rate as a function of self.columns
(must be able to take all of self.columns as keywords)
n_expected is predicted total number
"""
rate_densities = rate_fn(**{c: self.catalog[c] for c in self.columns})
return -n_expected + sum(np.log(rate_densities))
solike/poisson_data.py
import pandas as pd
from cobaya.likelihood import Likelihood
from .poisson_data import PoissonData
class PoissonLikelihood(Likelihood):
class_options = {"name": "Poisson", "catalog_path": None, "columns": None}
def initialize(self):
catalog = self._get_catalog()
if self.columns is None:
self.columns = catalog.columns
self.data = PoissonData(self.name, catalog, self.columns)
def _get_catalog(self):
return pd.read_csv(self.catalog_path)
def _get_rate_fn(self, **kwargs):
"""Returns a callable rate function that takes each of 'columns' as kwargs.
"""
raise NotImplementedError
def _get_n_expected(self, **kwargs):
"""Computes and returns the integral of the rate function
"""
raise NotImplementedError
def logp(self, **params_values):
rate_fn = self._get_rate_fn(**params_values)
n_expected = self._get_n_expected(**params_values)
return self.data.loglike(rate_fn, n_expected)
solike/poisson.py
import numpy as np
import pandas as pd
from pkg_resources import resource_filename
from solike.poisson import PoissonLikelihood
class ClusterLikelihood(PoissonLikelihood):
class_options = {
"name": "Clusters",
"columns": ["tsz_signal", "z", "tsz_signal_err"],
"data_path": resource_filename("solike.clusters", "data/selFn_equD56"),
"data_name": resource_filename("solike.clusters", "data/ACTPol_Cond_scatv5.fits"),
}
def initialize(self):
self.zarr = np.arange(0, 2, 0.05)
self.k = np.logspace(-4, np.log10(5), 200)
super().initialize()
def get_requirements(self):
return {
"Pk_interpolator": {
"z": self.zarr,
"k_max": 5.0,
"nonlinear": False,
"hubble_units": False, # cobaya told me to
"k_hunit": False, # cobaya told me to
"vars_pairs": [["delta_nonu", "delta_nonu"]],
},
"Hubble": {"z": self.zarr},
}
def _get_catalog(self):
...
def _get_rate_fn(self, **kwargs):
...
def _get_n_expected(self, **kwargs):
...
Example: Adaptation of cluster-count likelihood
In progress (with Nick)
Combining likelihoods
import numpy as np
from solike.tests.test_mflike import cosmo_params, nuisance_params
def test_multi():
info = {
"likelihood": {
"solike.gaussian.MultiGaussianLikelihood": {
"components": ["solike.mflike.MFLike", "solike.SimulatedLensingLikelihood"],
"options": [{"sim_id": 0}, {"sim_number": 1}],
"stop_at_error": True,
}
},
"theory": {"camb": {"extra_args": {"lens_potential_accuracy": 1}}},
"params": {**cosmo_params, **nuisance_params},
}
info1 = {
"likelihood": {"solike.mflike.MFLike": {"sim_id": 0},},
"theory": {"camb": {"extra_args": {"lens_potential_accuracy": 1}}},
"params": {**cosmo_params, **nuisance_params},
}
info2 = {
"likelihood": {"solike.SimulatedLensingLikelihood": {"sim_number": 1},},
"theory": {"camb": {"extra_args": {"lens_potential_accuracy": 1}}},
"params": {**cosmo_params},
}
from cobaya.model import get_model
model = get_model(info)
model1 = get_model(info1)
model2 = get_model(info2)
logp = np.float(model.loglikes({}, cached=False)[0])
assert np.isfinite(logp)
assert np.isclose(
logp, float(model1.loglikes({}, cached=False)[0] + model2.loglikes({}, cached=False)[0])
)
class MultiGaussianLikelihood(GaussianLikelihood):
class_options = {"components": None, "options": None, "cross_cov_path": None}
def initialize(self):
self.likelihoods = [get_likelihood(*kv) for kv in zip(self.components, self.options)]
self.cross_cov = CrossCov.load(self.cross_cov_path)
# Why doesn't merge_params_info() work here?
all_params = [l.params for l in self.likelihoods if hasattr(l, "params")]
if all_params:
self.params = merge_info(*all_params)
data_list = [l.data for l in self.likelihoods]
self.data = MultiGaussianData(data_list, self.cross_cov)
def initialize_with_provider(self, provider):
for like in self.likelihoods:
like.initialize_with_provider(provider)
super().initialize_with_provider(provider)
def _get_theory(self, **kwargs):
return np.concatenate([l._get_theory(**kwargs) for l in self.likelihoods])
def get_requirements(self):
reqs = {}
for like in self.likelihoods:
reqs = recursive_update(reqs, like.get_requirements())
return reqs
Cobaya
GaussianLikelihood
PoissonLikelihood
GaussianData
PoissonData
class MyLikelihood(...):
class_options = dict(...)
def get_requirements(self):
...
def _get_data(self):
...
def _get_theory(self):
...
???
Goal:
Cobaya-compatible likelihoods for SO
By Tim Morton
Cobaya-compatible likelihoods for SO
- 748