R
E
A
C
T
O
xamples
epeat
ode
pproach
ptimize
est
{ Big O }
YDKJS!
Question 1
function foo(arr) {
var sum = 0;
var product = 1;
for (var i = 0; i < arr.length; i++)
sum += arr[i];
for (var j = 0; j < arr.length; j++)
product *= arr[i];
console.log(sum * product);
}
Question 1 Answer
/* Answer: 0(n)
function foo(arr) {
var sum = 0; // O(1)
var product = 1; // O(1)
for (var i = 0; i < arr.length; i++) // O(arr)
sum += arr[i]; // O(1)
for (var j = 0; j < arr.length; j++) // O(arr)
product *= arr[i]; // O(1)
console.log(sum * product); // O(1)
}
// O(1) + O(1) + (O(arr) * O(1)) + (O(arr) * O(1)) + O(1)
// O(3 + 2arr) => O(arr) => O(n)
*/
Question 2
function bar(arr) {
for (var i = 0; i < arr.length; i++)
for (var j = 0; j < arr.length; j++)
console.log(arr[i] + arr[j]);
}
Question 2 Answer
/*
Answer 2: On^2
function bar(arr) {
for (var i = 0; i < arr.length; i++) // O(arr)
for (var j = 0; j < arr.length; j++) // O(arr)
console.log(arr[i] + arr[j]); // O(1)
}
// O(arr) * O(arr) * O(1) => O(arr^2) => O(n^2)
*/
Question 3
function baz(arrA, arrB) {
for (var i = 0; i < arrA.length; i++)
for (var j = 0; j < arrB.length; j++)
console.log(arrA[i] + arrB[j]);
}
Question 3 Answer
/*
Answer 3: O(nm)
function baz(arrA, arrB) {
for (var i = 0; i < arrA.length; i++) // O(arrA)
for (var j = 0; j < arrB.length; j++) // O(arrB)
console.log(arrA[i] + arrB[j]); // O(1)
}
// O(arrA) * O(arrB) * O(1) => O(nm)
*/
Question 4
function fib (n) {
if (n === 1 || n === 0) return n;
else return fib(n - 1) + fib(n - 2);
}
Question 4 Answer
/*
Answer 4: O(2^n)
fib(4)
/ \
fib(3) fib(2)
/ \ / \
fib(2) fib(1) fib(1) fib(0)
/ \
fib(1) fib(0)
our input is equal to 4: n = 4
we go four levels deep, so depth = n
we branch twice with each recursive call
therefore, runtime is O(2^n)!
*/
Question 5
function fib (n, memo) {
if (!memo) var memo = {};
if (n === 1 || n === 0) return n;
else if (memo[n]) return memo[n];
else memo[n] = fib(n - 1, memo) + fib(n - 2, memo);
return memo[n];
}
Question 5 Answer
/*
Answer 5: O(n)
fib(4)
/ \
fib(3) fib(2)
/ \ / \
fib(2) fib(1) fib(1) fib(0)
/ \
fib(1) fib(0)
1. fib(4) = fib(3) + fib(2)
/
2. fib(3) = fib(2) + fib(1)
/
3. fib(2) = fib(1) + fib(0) = memo[2]
4. fib(3) = memo[2] + fib(1) = memo[3]
5. fib(4) = memo[3] + fib(2) = memo[3] + memo[2]
That entire second branch got taken out of the picture
Every step ends up being in constant time, which we only do a maximum of n times
Using a memo cuts runtime down to O(n)!
*/
Big O - YDKJS
By Tom Kelly
Big O - YDKJS
Calculate the runtime complexity of various algorithms
- 1,441