Update

Introductory Game Theory

Prisoner's Dilemma

u_{1}(\sigma) \geq \max _{\sigma_{1}^{\prime} \in \Sigma_{1}} u_{1}\left(\sigma_{1}^{\prime}, \sigma_{2}\right) \quad u_{2}(\sigma) \geq \max _{\sigma_{2}^{\prime} \in \Sigma_{2}} u_{2}\left(\sigma_{1}, \sigma_{2}^{\prime}\right)

Nash Equilibrium

Start Simple

Rock Paper Scissors

Regret Matching

Finding Nash Equilibria via Self-Play

R_{i}^{T}=\frac{1}{T} \max _{\sigma_{i}^{*} \in \Sigma_{i}} \sum_{t=1}^{T}\left(u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{t}\right)-u_{i}\left(\sigma^{t}\right)\right)

Counterfactual Regret Minimization

Finding Nash Equilibria via Self-Play

1

2

3

(1,-1) (-1,1) (-1,1)
(-1,1) (1,-1) (-1,1)
(-1,1) (-1,1) (1,-1)
(1,-1) (-1,1) (-1,1)
(-10,10) (1,-1) (-1,1)
(-1,1) (-1,1) (1,-1)

Future Work

  • Better sensing models
  • More complex orbits
  • [Imperfect Information] extensive-form games
    • UKF tracking - detecting satellite maneuvers
    • Operating over state belief
  • Satellite v. Satellite
    • Incorporating maneuvering actions & information gathering actions
  • Exploring different methods
    • CFR (poker)
    • Regret Matching
    • iLQGames

deck

By Tyler Becker

deck

  • 410