Part-time

09/03/2021

Loïc BRANSTETT

Maître de stage: Faïçal Selka

Application du Deep Learning pour l’amélioration de la qualité des images fluoroscopies à faible dose en rayon X

Introduction

Loïc BRANSTETT

20 ans

3ème année à EPITECH STRASBOURG

Auto-présentation

Introduction

Mon projet professionnel

Introduction

Choix du stage

Contexte

Environnement

Contexte

Environnement

Ma contribution

Context

Ma contribution

Context - Problème

M

Ma contribution

Context - Problème

  1. Ionizing radiation and cancer risk: evidence from epidemiology. 1998 Radiat
  2. Radiation Exposure to the Surgeon and Patient During a Fluoroscopic Procedure: How High Is the Exposure Dose? A Cadaveric Study. 2016 Spine
  3. Radiation exposure during fluoroscopically assisted pedicle screw insertion in lumbar spine. 2000 Spine
  4. Does surgeon experience influence the amount of radiation exposure during orthopedic procedures? A systematic review. 2019 orthopedic review

Ma contribution

Context - Solutions

  1. Breast Cancer in Women With Scoliosis Exposed to Multiple Diagnostic X Rays. J Natl Cancer Inst 1989;81:1307-1312
  2. Fluoroscopically Guided Interventional Procedures: A Review of Radiation Effects on Patients' Skin and Hair. Radiology 2010;254:2
  3. FLUOROSCOPY DURATION IN ORTHOPEDIC SURGERY. Rev Bras Ortop. 2015;46(2):136-138. Published 2015 Dec 6.
  4. Radiation exposure during pedicle screw placement in adolescent idiopathic scoliosis: is fluoroscopy safe?. Spine 2006

Low dose

Moins de radiation

Image bruité

Ma contribution

Context - Solutions

Ma contribution

Mon rôle

Ma contribution

Mon rôle

Low dose

Méthode classique

Deep Learning

Débruitage des images

Ma contribution

Mes tâches - Noise2Noise

PSNR: 30.5 db
  1. Noise2Noise: Learning Image Restoration without Clean Data. 2018 ICML

Noise2Noise

Ma contribution

Mes tâches - Base de donnée

x2000
x6000
Speckle
Gaussian
Poisson
Add noise
Input

Ma contribution

Mes tâches - Noise2Void

  1. Noise2Void - Learning Denoising from Single Noisy Images, 2019 arXiv

Ma contribution

Mes tâches - Intégration C++ libTorch

$ ./n2n model.pt input.png output.png
Cuda: avalaible
Module: 1348ms
Input: 34ms
Prediction: 36ms
Output: 29ms

Bilan du stage

Résulats

PSNR: 35.57 db
PSNR: 13.21 db
GT
Bruité
N2N

Bilan du stage

Compétences

Conclusion

FIN

Bilan du stage

Bilan du stage

Part-time (Confidential)

By urgau-1

Part-time (Confidential)

  • 170