Point Slope Form

 

\pi \cdot \pi
\pi \cdot \pi

\(x\)

\(y\)

\pi \cdot \pi

\((x_1, y_1)\)

\(x\)

\(y\)

\(x_1\)

\(y_1\)

\pi \cdot \pi

\((x, y)\)

\((x_1, y_1)\)

\(x\)

\(y\)

\(x\)

\(x_1\)

\(y_1\)

\(y\)

Slope of line, \(\displaystyle m=\frac{y-y_1}{x-x_1}\)

\pi \cdot \pi

Slope of line, \(\displaystyle m=\frac{y-y_1}{x-x_1}\)

Multiplying both sides by \(x-x_1\), we get:

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{x-x_1}\cdot (x-x_1)\)

\pi \cdot \pi

Slope of line, \(\displaystyle m=\frac{y-y_1}{x-x_1}\)

Multiplying both sides by \(x-x_1\), we get:

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{x-x_1}\cdot (x-x_1)\)

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{\cancel{x-x_1}}\cdot (\cancel{x-x_1})\)

\pi \cdot \pi

Slope of line, \(\displaystyle m=\frac{y-y_1}{x-x_1}\)

Multiplying both sides by \(x-x_1\), we get:

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{x-x_1}\cdot (x-x_1)\)

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{\cancel{x-x_1}}\cdot (\cancel{x-x_1})\)

\(\displaystyle m\cdot (x-x_1)=y-y_1\)

\pi \cdot \pi

Slope of line, \(\displaystyle m=\frac{y-y_1}{x-x_1}\)

Multiplying both sides by \(x-x_1\), we get:

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{x-x_1}\cdot (x-x_1)\)

\(\displaystyle m\cdot (x-x_1)=\frac{y-y_1}{\cancel{x-x_1}}\cdot (\cancel{x-x_1})\)

Rewriting the equation:

\(\displaystyle m\cdot (x-x_1)=y-y_1\)

\(\displaystyle y-y_1=m\cdot (x-x_1)\) or \(\displaystyle y-y_1=m(x-x_1)\)

\pi \cdot \pi

Point Slope Form

By Anurag Katyal

Point Slope Form

  • 118