A Self Similar Model for Core Collapse Supernovae Shock Waves

Almog Yalinewich - Caltech Tea Talk 14.9.20

Plan of the Talk

  • Introduction to core collapse supernovae
     
  • Introduction to self similar solutions
     
  • Self Similar Model for a core collapse supernova shock wave
     
  • Implications for core collapse supernovae

Introduction to Core Collapse Supernovae

Why do we care?

Stellar Evolution

Intro to the "Bee Movie" (2007)

physics

star

explode

The energy released is

star

explodes

stars

State of affairs in the previous millennium

1D sims bomb
2/3D sims explode

Couch 2017

Turbulence

Couch 2017

Turbulence doesn't add more energy to the system, so how does it help the star explode?

Borrielloa et al 2014

The problem with Simulations

Borrielloa et al 2014

  • Expensive
  • Volatile
  • Not reproducible

Introduction to Self Similar Solutions

Origin Story

Scaling Relations

E \approx M V^2
E \approx \left(\rho_0 R^3\right) \left(R/t\right)^2
R \approx \left(\frac{E}{\rho_0} t^2\right)^{1/5}

Self Similarity

Suzuki & Shigeyama 2014

Hydrodynamic Equations

\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho v r^2\right) = 0
\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial r} = 0
\frac{\partial s}{\partial t} + v \frac{\partial s}{\partial r} = 0
s = \ln p - \gamma \ln \rho
c = \sqrt{\gamma p / \rho}

Reduction to ODES

\xi = \frac{r}{R}
\rho = \rho_0 G \left(\xi\right)
v = \dot{R} \xi V\left(\xi \right)
c = \dot{R} \xi C\left(\xi \right)
\xi G{\left(\xi \right)} \frac{d}{d \xi} V{\left(\xi \right)} + \xi V{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} - \xi \frac{d}{d \xi} G{\left(\xi \right)} + 3 G{\left(\xi \right)} V{\left(\xi \right)} = 0
\gamma \left(- 2 \xi \frac{d}{d \xi} V{\left(\xi \right)} + 2 \left(\xi \frac{d}{d \xi} V{\left(\xi \right)} + V{\left(\xi \right)}\right) V{\left(\xi \right)} - 5 V{\left(\xi \right)}\right) G{\left(\xi \right)} + 2 \left(\xi C{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} + 2 \xi G{\left(\xi \right)} \frac{d}{d \xi} C{\left(\xi \right)} + 2 C{\left(\xi \right)} G{\left(\xi \right)}\right) C{\left(\xi \right)} = 0
2 \gamma \left(- \gamma \xi C{\left(\xi \right)} V{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} + \gamma \xi C{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} + \xi C{\left(\xi \right)} V{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} - \xi C{\left(\xi \right)} \frac{d}{d \xi} G{\left(\xi \right)} + 2 \xi G{\left(\xi \right)} V{\left(\xi \right)} \frac{d}{d \xi} C{\left(\xi \right)} - 2 \xi G{\left(\xi \right)} \frac{d}{d \xi} C{\left(\xi \right)} + 2 C{\left(\xi \right)} G{\left(\xi \right)} V{\left(\xi \right)} - 5 C{\left(\xi \right)} G{\left(\xi \right)}\right) = 0

Boundary Conditions

G \left(1\right) = \frac{\gamma+1}{\gamma-1}
V \left(1\right) = \frac{2}{\gamma+1}
C \left(1\right) = \frac{\sqrt{2 \gamma \left(\gamma-1\right)}}{\gamma+1}

Rankine Hugoniot conditions for a strong shock

Hydrodynamic profiles

Energy Integral

\frac{E}{4 \pi \rho R^3 \dot{R}^2} = \int_0^{1} \xi^4 d \xi G \left(\frac{V^2}{2} + \frac{C^2}{\gamma-1}\right)

Thin shell approximation

E = \frac{4 \pi}{3} R^3 \frac{p}{\gamma-1}
M = \frac{4 \pi}{3} R^3 \rho_0
\frac{d}{d t} \left(M \dot{R} \right) = 4 \pi R^2 p
\dot{R} = \sqrt{\frac{3}{2 \pi} \left(\gamma-1\right) \frac{E}{\rho_0 R^3}} \Rightarrow R = \sqrt[5]{\frac{75}{8 \pi} \left(\gamma-1\right) \frac{E}{\rho_0} t^2}

Graded Density Profile

\rho_a = k r^{-\omega}
E \approx k R^{3-\omega} \left(R/t\right)^2
R \approx \left(E t^2/k\right)^{\frac{1}{5-\omega}}

Self Similar Model for a core collapse supernova shock wave

Scaling Relations

Explosion + point gravity

Breaks self similarity

Except for special set of parameters

r \approx \left(\mathcal{G} M t^2\right)^{1/3}

Free fall trajectory

Graded density trajectory

r \approx \left(E t^2/k\right)^{\frac{1}{5-\omega}}
\omega = 2

Virial parameter

\epsilon = \frac{E}{4 \pi \mathcal{G} M k}

This is a realistic profile

Mezzacappa et al. 2001

Pre - Explosion profile

Janka et al. 2012

Hydrodynamic Equations

\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho v r^2\right) = 0
\frac{\partial v}{\partial lt} + v \frac{\partial v}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial r} = \color{cyan}-\frac{\mathcal{G} M}{r^2}
\frac{\partial s}{\partial t} + v \frac{\partial s}{\partial r} = 0
s = \ln p - \gamma \ln \rho
c = \sqrt{\gamma p / \rho}

Reduction to ODEs

R = \varpi \left(\mathcal{G} M t^2 \right)^{1/3}
\rho = k R^{-2} G \left(\xi\right), \, v = \dot{R} V \left(\xi\right), \, c = \dot{R} C \left(\xi\right)
\frac{G'\left(\xi\right)}{G\left(\xi\right)} = \frac{\left(8 \gamma \varpi^{3} \xi \left(\xi - V\right)^{3} + \gamma \left(\xi - V\right) \left(2 \varpi^{3} \xi^{2} V - 81\right) + \varpi^{3} \xi^{2} \left(12 - 8 \gamma\right) C^{2}\right)}{4 \varpi^{3} \xi^{2} \left(- \gamma \left(\xi - V\right)^{3} + \left(\xi - V\right) C^{2}{\left(\xi \right)} + \left(\gamma \xi - \gamma V - \xi + V\right) C^{2}\right)}
V'\left(\xi\right) = \frac{- 8 C^{2} V \gamma \varpi^{3} \xi + 12 C^{2} \varpi^{3} \xi^{2} - 2 V^{2} \gamma \varpi^{3} \xi^{2} + 2 V \gamma \varpi^{3} \xi^{3} + 81 V \gamma - 81 \gamma \xi}{4 \gamma \varpi^{3} \xi^{2} \left(C^{2} - V^{2} + 2 V \xi - \xi^{2}\right)}
C'\left(\xi\right) = \frac{C \left(8 \gamma \varpi^{3} \xi \left(V - \xi\right)^{2} \left(V \gamma - V - \gamma \xi + \xi\right) + \gamma \left(2 V \varpi^{3} \xi^{2} - 81\right) \left(V \gamma - V - \gamma \xi + \xi\right) - 4 \varpi^{3} \xi^{2} \left(C^{2} - \gamma \left(V - \xi\right)^{2}\right) \left(2 \gamma - 3\right)\right)}{8 \varpi^{3} \xi^{2} \left(C^{2} \left(V - \xi\right) + C^{2} \left(V \gamma - V - \gamma \xi + \xi\right) - \gamma \left(V - \xi\right)^{3}\right)}
\xi = r / R

Boundary Conditions

\frac{\rho_d}{\rho_u} = \frac{\gamma+1}{\gamma-1}
\frac{v_d}{v_u} = \frac{\gamma-1}{\gamma+1}
p_d = \rho_u v_u \left(v_u-v_d\right)

Rankine Hugoniot for a strong shock

But the upstream material is also affected by gravity

Free fall trajectory

\ddot{r} = - \frac{\mathcal{G} M}{r^2}
\sqrt{\frac{2 \mathcal{G} M}{r_0^3}} t = \sqrt{\frac{r}{r_0} \left(1-\frac{r}{r_0}\right)} + \cos^{-1} \left(\sqrt{\frac{r}{r_0}}\right)
x = r/r_0

Useful parameter: current to original radius ratio

\frac{\mathcal{G} M}{r} - \frac{\mathcal{G} M}{r_0} = \frac{1}{2} \dot{r}^2
\chi = R/r_0

Compression

\frac{\Delta r}{\Delta r_0} = \sigma \left(x\right) = \frac{3-x}{2} + \frac{3 \sqrt{1 - x} \cos^{-1}{\left(\sqrt{x} \right)}}{2 \sqrt{x}}
\rho = \rho_a \left(r_0\right) \frac{r_0^2 \Delta r_0}{r^2 \Delta r} = \frac{\rho_a \left(r/x\right)}{x^2 \sigma \left(x\right)}
\lim_{x \rightarrow 1} \sigma \left(x\right) = 1
\sigma \left(x\ll1\right) \approx \frac{3 \pi}{4 \sqrt{x}}

Shock Trajectory

R = \varpi \left(\chi \right) \left(\mathcal{G} M t^2\right)^{1/3}
\varpi \left(\chi\right) = \sqrt[3]{2} \chi \left(\sqrt{\chi} \sqrt{1 - \chi} + \cos^{-1} {\left(\sqrt{\chi} \right)}\right)^{-\frac{2}{3}}
\dot{R} = \frac{2}{3} \varpi^{3/2} \sqrt{\frac{\mathcal{G} M}{R}}

Self Similar Boundary Conditions

G\left(1\right) = \frac{\gamma+1}{\gamma-1} \frac{1}{\sigma}
C \left(1\right) = \frac{\sqrt{2 \gamma \left(\gamma-1\right)}}{\gamma+1} \left(1+\frac{3 \sqrt{2}}{\varpi^{3/2}} \sqrt{\frac{1}{\chi} - 1}\right)
V \left(1\right) = \frac{2}{\gamma+1} - \frac{\gamma-1}{\gamma+1} \frac{3 \sqrt{2}}{\varpi^{3/2}} \sqrt{\frac{1}{\chi}-1}

Hydrodynamic Profiles

\chi = 0.1
\gamma = 1.01
\chi = 0.1
\gamma = 4/3

Energy Integral

E = \int_0^{R} 4 \pi r^2 dr \rho \left(\frac{1}{2} v^2 + \frac{c^2}{\gamma \left(\gamma-1\right)} - {\color{cyan}\frac{\mathcal{G} M}{r}}\right) =
= \frac{16 \pi}{9} k \mathcal{G} M \varpi^3 \int_0^1 \xi^2 d \xi G \left(\frac{V^2}{2} + \frac{C^2}{\gamma\left(\gamma-1\right)} - {\color{cyan}\frac{9}{4 \varpi^3 \xi}}\right)

Energy Curve

Phase Diagramme

The Role of Turbulence

More diffusion is like higher gamma

Couch et al 2020

Implications for Core Collapse Supernovae

Neglected Effects

  1. Neutrino heating
  2. turbulence
  3. radiation transfer
  4. nuclear reactions
  5. semi degenerate
    equation of state
  6. Acoustic waves in the shocked region
    (Gossan, Fuller & Roberts 2019)

Heating

E \approx Q t^q \approx k R^{3-\omega} \dot{R}^2
R \propto t^{\frac{2+q}{5-\omega}}
q=1 \Rightarrow \omega = \frac{1}{2}

Turbulent Diffusion

\nu \propto R \dot{R}

Model like the Shakura Sunyaev alpha model

Classical diffusion breaks self similarity

workaround:

Higher order effect

Optical depth

>

Ideal shock

\tau \propto \int \rho \, dr

Turbulent shock

Conclusion

An analytic self similar model for a core collapse supernovae

Critical energy, depending on shock structure

Turbulent shock more resilient against gravity

Model can be improved within self similar framework

Questions?

A self Similar...

By almog yalinewich

A self Similar...

  • 288