Deep Learning
Alvin Chan
with
CNN
Resources
Dataset
- Image
- Text
- Graphs
- etc


Model
- With layers of 'neurons'
- Dense layer
- Convolutional layer
- Recurrent layer
- etc

Optimizer
- Adjust learned 'knowledge'
- Examples
- SGD
- ADAM

A neuron
input_1
input_2
input_3
output
param_1
param_2
param_3
+
+
=
output
input_1 * param_1 input_2 * param_2 input_3 * param_3
'Rectangle' neuron
length
breadth
brightness
perimeter
x0
x2
x2
length
breadth
Deep learning
input_1
input_2
input_3
output



Relu Activation Function
- Dense Layer
- Convolutional Layer
- Recurrent Layer
- Many more..
of neural layer
Types
Dense layers

Dense Layer 1
Dense Layer 2
Convolutional layers
input_1
input_2
input_3
output_1
input_4
input_5

Convolutional layers
input_1
input_2
input_3
output_1
input_4
input_5

output_2
Step 2
Convolutional layers
input_1
input_2
input_3
input_4
input_5

output_3
step 3
output_1
output_2
Deep learning for images

32 px
32 px


Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

32 px
32 px


Input Image

CNN Kernel
Stride = 1
Same Padding



Stride = 1
Same Padding
Stride = 2
Same Padding
Stride = 2
Valid Padding





Max Pooling

Deep layers
Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf

CNN Neurons


Size & Accuracy

Inception

Residual Connection

NASNet
Resources
Cheers!
Alvin Chan
Slides @
https://slides.com/alvinchan/team_jul19
Deep Learning Alvin Chan with CNN
CNN: May19 Team ppt
By Alvin Chan
CNN: May19 Team ppt
Team meeting 11 Jul 2019
- 957