Learning from DeFi: Would Automated  
Market Makers  Improve Equity Trading?

Katya Malinova and Andreas Park

 



 

Some Motivation

  • Blockchain: borderless general purpose value and resource management tool

Big Picture

  • DeFi: financial applications that run on blockchains
  • \(\Rightarrow\) brought new ideas and tools
  • one new market institution: automated market makers

Trading Infrastructure

payments network

Stock Exchange

Clearing House

custodian

custodian

 beneficial ownership record

seller

buyer

Broker

Broker

Broker

Exchange

Internalizer

Wholeseller

Darkpool

Venue

Settlement

Application: decentralized trading with automated market makers

New institutions!

  • passive "shared" liquidity provision
  • new pricing function

Key Components

  • Our question:
    1. Can an economically viable AMM be designed for current equity markets?
    2. Would such an AMM improve current markets?
  • Pooling of liquidity!
  • Liquidity providers:
    • pro-rated 
      • trading fee income
      • risk
    • use assets that they own to earn passive (fee) income
      • retain exposure to the asset
  • Liquidity demanders:
    • predictable price
    • continuous trading
    • ample liquidity

where do I find these plots? theblock.co/data/

How do people trade on-chain?

How do people trade on-chain?

limit order book periodic auctions AMM
continuous
trading
price discovery with orders
risk
sharing
passive liquidity provision
price
continuity
continuous liquidity
sniping
prevented

AMM Theory: Price Functions

Basic Requirements for "unconstrained" two-asset liquidity pool

  • Two assets:
    • cash and an asset 
    • deposits in pool of \(c\) cash and \(a\) asset
  • AMMs should be self-contained: pricing rule based on
    • deposits \(a,c\) and
    • liquidity demanded \(q\)
  • implied value of the asset at deposit: \[p=\frac{c}{a}.\]
  • marginal price: an infinitesimal unit should cost \[p^m=p\]

What does an AMM need?

  • trades create linear changes:
    • a trade of \(q\in(-\infty,a),\) will cost \(\Delta c(q)\)
    • liquidity changes
      • \(a\) \(\to\) \(a-q\)
      • \(c\) \(\to\) \(c+\Delta c(q)\)
    • \(\to\) marginal price after trade of \(q\) is

      \[p^m(0)=\frac{c}{a}~~\to~~p^m(q)=\frac{c+\Delta c(q)}{a-q}.\] 

Some Pricing Rules from Traditional Markets: Uniform Price

  • assume cost is price \(\times\) quantity: \[\Delta c(q)=q\cdot p^m(q)\]
  • plus assume average price \(=\) marginal price after trade

    \[p^m(q)=\frac{c+q\cdot p^m(q)}{a-q}~~\Leftrightarrow~~p^m(q)=\frac{c}{a-2q}.\]
     
  • formalized and analyzed by Canidio and Fritsch (2023) and implemented in COW-Swap

\(q=2\)

Example: \(\Delta c(q)= q\times p^m(q)=2\times 15.5\)

Main pricing rule in stock exchanges: limit order book

quantity

price

\(q\)

\(p^m(q)\)

\(\Delta c(q)=\int_0^qp^m(s)~ds\)

again note: the marginal pricing function \(p(q)\) does not have to be linear

Some Pricing Rules from Traditional Markets: Limit Order Book

  • For AMM: assume continuity \(\to\) price of "final" marginal unit coincides with price of  "first" marginal unit of next trade \[\Delta c(q)=\int_0^q p^m(s) ds~\to~\Delta c'(q)=p^m(q).\]
  • Also "first" unit costs nothing \(\Delta c(0)=0\)
  • This gives us a differential equation
    \[p^m(q)=\frac{c+\Delta c(q) }{a-q}~~\Leftrightarrow~~\Delta c'(q)=\frac{c+\Delta c(q)}{a-q},\]
  • with solution \[\Delta c(q)=q\cdot\frac{c}{a-q}.\]
  • Idea of pricing: liquidity before trade \(=\) after trade
    \[L(a,c)=L(a-q,c+\Delta c)\]
  • \(L=\)"iso-liquidity curve"
  • special form: \(L=a\cdot c\)

Most Common Pricing Rule in DeFi: Constant Product

Most Common Pricing Rule in DeFi: Constant Product

  • With \[a\cdot c= (a-q) (c+\Delta c(q))\]
     
  • we compute cost \[\Delta c(q)=q\cdot  \frac{c}{a-q},\]
     
  • and marginal price \[p^m(q)=\frac{c+\frac{cq}{a-q}}{a-q}=\frac{ac}{(a-q)^2}.\]

Insight: AMM pricing function is the same as a limit order book when we require

  • that prices are continuous and
  • that prices are determined by liquidity deposits only
  • price \(\times\) quantity: \[p(q)=\frac{c}{a-2q}\]
  • limit order book: \[p(q)=\frac{c}{a-q}.\]
  • constant product: \[p(q)=\frac{c}{a-q}.\]  

average prices

Some insights on pricing functions

  • Price \(\times\) quantity
    • nice feature:
      • regret-free price: if price move is due to information, you have no positional loss
    • poor feature:
      • you can always save by order-splitting (formally shown by Canidio and Fritsch (2023)) 
      • limit price for splitting = limit order book price
  • LOB/CP
    • nice feature:
      • order splitting doesn't pay
    • poor feature:
      • prices not regret-free: if price move is due to information, you always lose

The Pricing Function

  • liquidity provider makes asset and cash deposit
  • more deposits flatten price curve
    • may attract more volume
    • but larger "positional" dollar loss when prices move
  • larger liquidity deposits \(a\) \(\Rightarrow\) 
    • lower costs (price impact) for liquidity demanders

Transaction cost (here: price impact) of buying \(q\) 

\[\frac{p(q)-p(0)}{p_0}=\frac{q}{a-q}\]

 

Liquidity Supply and Demand in an Automated Market Maker

Facts about modelling liquidity provision

  • You provide liquidity when the marginal price at the AMM and elsewhere is \(p(t_0)=p.\)
     
  • You make a decision what to do next at \(t_1>t_0\)
     
  • Many things can happen, for instance:
    • AMM trades
    • price moves in the broader markets

Key questions:

  1. Is there arbitrage at \(t_1\)?
  2. What is the "correct" price for your liquidity position at \(t_1\)?
  3. What has happened between \(t_0\) and \(t_1\)?

Two broad approaches for modelling liquidity provision

  1. Provide-and-Forget Liquidity provision
    • Check-in times are far apart, \(t_1\gg t_0\)
    • Price at \(t_1\) is efficient/the truth
    • There was a price-moving trade and lots of other trades
    • \(\to\) liquidate position at fair price
       
  2. Liquidity Provision using options-like thinking
    • Check-in time close to original time  \(t_1=t_0+dt\)
    • Price at \(t_1\)  may be right or wrong
    • \(\to\) may be able to rebalance position cheaply at another price
    • hedge risk like an options market maker

You worry about the positional loss relative to any income.

You worry whether you can rebalance your liquidity profitably.

(im)permanent loss

"LVR" = loss-vs-rebalancing

  • Aoyagi and Ito (2021), Cartea, Drissi, Monga (2023), Milionis, Moallemi, Roughgarden, and Zhang (2022), Milionis, Moallemi, Roughgarden (2024)
  • Lehar and Parlour (2021), Hasbrouck, Riviera, Saleh (2023), Park (2021), Malinova and Park (2023)[this paper]

Provide-and-Forget Liquidity Provision

  • Deposit asset & cash when the asset price is \(p\)
  • Withdraw at price \(p'\ne p\) 

 

 

Buy and hold

Provided liquidity

in the pool

  • Why?
    • adverse selection losses
    • arbitrageurs trade to rebalance the pool 
  • \(\to\) always positional loss relative to a "buy-and-hold"
  • Asset with value \(V_0\) that may change to value \(V_t\)
     
  • Efficient prices so that \(p_0=V_0\)
     
  • Arbitrageurs who move price from \(p_0\) to \(p_t=V_t\) by trading a net quantity \(q^*\) at total cost \(\Delta c(q^*)\)
     
  • Additional balanced (dumb) volume \(v\)
     
  • Collect a fee \(F\) on all trading volume

Big Picture for Liquidity Provision

  • Example: 
    • limit order books:
      • Fee=collect bid-ask spread on uninformed trades
      • amount paid = cumulative cost of multiple trades or walking the book
    • Auction market (a la Kyle)
      • Overcharge uninformed to balanced in expectation against possible informed

\[\underbrace{F\times v}_{\text{earn on dumb people}} +\underbrace{F\times \Delta c (q^*)}_{\text{earn on smart people}}+\underbrace{\Delta c(q^*)-p_tq^*}_{\text{loss from smart people}}\ge 0\]

Basics of Liquidity Provision

Basic idea of liquidity provision: earn more on balanced flow than what you lose on price movement

\[\text{fee income} +\underbrace{\text{what I sold it for}-\text{value of net position}}_{\text{adverse selection loss}} \ge \text{cost of capital} \]

in AMMs:
protocol fee

in tradFi: bid-ask spread

\[\underbrace{F\times v}_{\text{earn on dumb people}} +\underbrace{F\times \Delta c (q^*)}_{\text{earn on smart people}}+\underbrace{\Delta c(q^*)-p_tq^*}_{\text{loss from smart people}}\ge \text{cost of capital}\]

Basics of Liquidity Provision

\[\underbrace{F\times v}_{\text{earn on dumb people}} +\underbrace{F\times \Delta c (q^*)}_{\text{earn on smart people}}+\underbrace{\Delta c(q^*)-p_tq^*}_{\text{loss from smart people}}\ge \text{cost of capital}\]

\[\underbrace{F \int DV \mu(DV) }_{\text{fees earned on}\atop \text{balanced flow}}+\int_0^\infty\underbrace{(\Delta c(q^*)-q^*p_t(R)}_{\text{adverse selection loss} \atop \text{when the return is {\it R}}} +\underbrace{F \cdot \Delta c(q^*))}_{\text{fees earned}\atop \text{from arbitrageurs}}~\phi(R)dR \ge 0.\]

\(q^* \) is what arbitrageurs trade to move the price to reflect \(R\)

with expectations (and setting cost of capital to zero) and using \(p_t=V_t=Rp_0\)

Equilibrium Liquidity Supply

  • Gives us an equilibrium deposit \(a^*\)

    \[a^*=\frac{F E[V]}{2}\underbrace{\left(-F\times E[|\sqrt{R}-1|/2]-E[\text{PL}]\right)^{-1}}_{=:C^\mathsf{CP}(\phi,F)^{-1}}.\]

liquidity provider choice variable: the initial deposit

adverse selection/positional loss when the return is \(R\) (write \(E[PL]\))

\[\int\limits_0^\infty\left(\sqrt{R}-\frac{1}{2}\left(1+R\right)+\frac{F}{2}|\sqrt{R}-1|\right)~\phi(R)dR+F\frac{E[V]}{2a}.=0\]

fees earned

on informed

fees earned

on balanced flow

  • Gives us an equilibrium deposit \(a^*\)

    \[a^*=\frac{F E[V]}{2}\left(-F\times E[|\sqrt{R}-1|/2]-E[\text{PL}]\right)^{-1}.\]

Sidebar: we can quantify how much a PASSIVE LP loses when the price moves by \(R\)

for orientation:

  • If the stock price drops by 10% the incremental loss for liquidity providers is 13 basis points on their deposit
    • \(\to\) total loss=-10.13%
  • If the stock price rises by 10%, the liquidity provider gains 12 basis points less on the deposit
    • \(\to\) total gain =9.88%

\[\frac{\text{adverse selection loss when the return is \(R\)}}{\text{initial deposit}}=\sqrt{R}-\frac{1}{2}(R+1)\]

see Barbon & Ranaldo (2022)

adverse selection loss
(or: impermanent loss)

Liquidity Demander's Decision & (optimal) AMM Fees

  • Two opposing forces in equilibrium for fee \(F\nearrow\) 
    1.  more liquidity provision
      \(\to\) lower price impact
    2. more fees to pay

Result:

competitive liq provision\(\to\) there exists an optimal (min trading costs) fee \(>0\)

  • \(\to\) derive closed form solution for competitive liquidity provision
  • depends on return distribution, balanced volume, quantity demanded

Similar to Lehar&Parlour (2023) and Hasbrouck, Riviera, Saleh (2023)

  • For trading of a fixed quantity:

    \[\text{LD cost}=\text{AMM price impact} +\text{AMM fee} .\]

\[F^\pi=\frac{1}{E[|\sqrt{R}-1|/2]+E[V]}\left(-2q\ E[\text{position loss}]+ \sqrt{-2qV\ E[\text{position loss}]}\right).\]

assume: liquidity providers add liquidity until they break even in expectation

Model Summary

  • We can express the equilibrium choice for liquidity provision.
     
  • We can measure the benefit for liquidity demanders who use the AMM.
     
  • We can determine the fee that maximizes the liquidity demander benefit (it's not zero!)
     
  • Next question:
    • How would this look like when applied to stock markets?
    • What are the optimal fees?
    • Is it feasible?
    • What are the empirical benefits?

Preliminaries & Some Motivation

Decentralized trading using automated market makers (AMM)

Liquidity providers

Liquidity demander

Liquidity Pool

AMM pricing is mechanical:

  • determined by the amounts of deposits 
  • most common:
    • constant product
    • #USDC \(\times\) #ETH = const

No effect on the marginal price

Sidebar: Capital Requirement (or: what about UniSwap v3?)

Deposit Requirements

  • Our approach: measure liquidity provision in % of market cap
     
  • Share-based liquidity provision is not a problem: the shares are just sitting at brokerages.
     
  • But: AMM requires an off-setting cash amount: \(c =a\cdot p(0)\).
     
  • Cash is not free:
    • at 6% annual rate, must pay 2bps per day.
    • Would need to add to fees
       
  • But: do we need "all that cash"?
     
  • No.
  • (hand-waving argument)
     
  • 2nd gen AMMs have liquidity provision "bands": specify price range for which one supplies liquidity
     
  • Here: specify range for \(R\in(\underline{R},\overline{R})\)
    • Outside range: don't trade.
    • Inside range: "full" liquidity with constant product formula.
       
  • Implication: only need cash and shares to satisfy
    in-range liquidity demand.

\(\Rightarrow \) Need about 5% of the value of the shares deposited -- not 100% --  to cover up to a 10% return decline

UniSwap v3

  • allow LPs to provide liquidity only when price is in interval \([\underline{p},\overline{p}]\)
     
  • (payoff conceptually the same as a covered call.)
     
  • \(\to\) conceptually similar to circuit breakers
     
  • caveat: because price interval is a choice, too many degrees of freedom
     
  • in literature (Hasbrouck, Riviera, Saleh (Management Science 2025), liquidity provision decision requires constant adjustments (also related to the concept of LVR=loss-vs-rebalancing)

How we think of the Implementation of an AMM for our Empirical Analysis

Approach: daily AMM deposits

you may say 24/7/365 is great -- but:

  • when are we making material announcements?
  • LPs need to monitor markets?

could be done with AMM rule with price \[\Delta c(q)=\frac{c}{a-2q}\]

uiii!

1. AMMs close overnight

2. Market: opening auction \(\to p_0\)

3. Determine: optimal fee; submit liquidity \(a,c\)
at ratio \(p_0=c/a\) until break even \(\alpha=\overline{\alpha}\)

4. Liquidity locked for the day

5. At EOD release deposits and fees

6. Back to 1.

Background on Data

Special Consideration 1: What volume?

  • some volume may be intermediated

  • with AMMs: no need for intermediation
  • \(\to\) intermediated volume could disappear 
  • \(\to\) use volume/2
  • Some caveats, e.g.
    • arbitrageur volumes
    • larger volume if AMM has lower trading costs

Special Consideration 2: What's \(q\) (the representative order size)?

  • use average per day
  • take long-run average + 2 std of daily averages
  • (also avg \(\times 2\),\(\times 4\), depth) 

All displayed data CRSP \(\cap\) WRDS

  • CRSP for shares outstanding
  • WRDS-computed statistics for
    • quoted spreads (results similar for effective)
    • volume
    • open-to-close returns
    • average trade sizes, VWAP
  • Time horizon: 2014 - March 2022
  • Exclude "tick pilot" period (Oct 2016-Oct 2018)
  • All common stocks (not ETFs) (~7550).
  • Explicitly not cutting by price or size
  • All "boundless" numbers are winsorized at 99%.

Special Consideration 3:

Where to get returns and volume?

  • Approach 1: "ad hoc" 
    • "one-day-back" look
    • take yesterday's return and volume when deciding on liquidity provision in AMM
  • Approach 2: estimate historical return distribution

 

AMMs based on historical returns

Return distribution example: Tesla

  • average \(F^\pi=11\)bps

Average of the market cap to be deposited for competitive liquidity provision: \(\bar{\alpha}\approx 2\%\)

almost break even on average (average loss 0.2bps \(\approx0\))

average: 94% of days AMM is cheaper than LOB for liq demanders

average savings: 16 bps

average daily: $9.5K

average annual saving: $2.4 million

implied "excess depth" on AMM relative to the traditional market

Optimally Designed AMMs with
"ad hoc" one-day backward look

Optimal fee \(F^\pi\)

\(\overline{\alpha}\) for \(F=F^\pi\)

Need about 10% of market cap in liquidity deposits to make this work

average benefits liquidity provider in bps (average=0)

Insight: Theory is OK - LP's about break even

with circuit breakers: what fraction of \(\alpha\) needs to be deposited as cash

Only need about 5% of the 10% marketcap amount in cash

AMMs are better on about 85% of trading days

quoted spread minus AMM price impact minus AMM fee (all measured in bps)

relative savings: what fraction of transactions costs would an AMM save? \(\to\) about 30%

theoretical annual savings in transactions costs is about $15B

Summary

  • AMMs do not require a blockchain - just a concept
  • could be run in the existing world (though there are institutional and regulatory barriers)
  • Our question:
    1. Can an economically viable AMM be designed for current equity markets?
    2. Would such an AMM improve current markets?
  • Answers:
    1. Yes.
    2. Massively.
  • Source of Savings:
    • Liquidity providers \(\not=\)  Citadel! 
    • \(\to\) no (overnight) inventory costs
    • \(\to\) use idle capital
    • \(\to\) + better risk sharing

Summary: alternative view

  • AMMs force LPs to optimize against a prescribed, fully contingent limit order book function
     
  • the positional loss and the break-even condition that we derive does not require strong assumptions such as behavior or number of informed traders
    • a loss for LPs will occur
    • it is conceptually limited
    • you will receive compensation through fees
       
  • based on calibration data, LPs would break even with this specification
     
  • \(\to\) a form of lower bar for liquidity cost?
     
  • \(\to\) that lower bar is not reached maybe tells us something about the competitiveness/frictions in the present market?

UniSwap v3

UniSwap v3 has "concentrated liquidity provision"

\(p_d\)

\(p_u\)

\(p_0\)

UniSwap v1/v2: provide liquidity \(a,c\) for all prices
\(p^m\in(0,\infty)\)

UniSwap v3: provide liquidity \(u,\Delta c(d)\) for price interval
\(p^m\in[p_d,p_u]\)

\(u\)

\(d\)

\(\}\)

\(\Delta c(d)\)

the pricing curve for each interval is determined by the constant product rule

How the price is determined

  • if the marginal price reaches the upper bound \(p_u\), you will sell \(u\) units of the asset
  • if the marginal price reaches the lower bound \(p_d\), you will sell \(d\) units of the cash
  • the price is still using constant product
  • virtual liquidity = v2 liquidity that would pertain if you'd supply liquidity on the entire interval of prices
  • constant product \(\Rightarrow\) marginal price curve has functional form \[p^m(q)=\frac{\tilde{a}c}{(\tilde{a}-c)^2}\]

where \(\tilde{a}\) is the virtual liquidity

quick disclaimer: what follows is not how UniSwap is explained on its website etc. But the resulting maths are the same

\(p_d\)

\(p_u\)

\(p_0\)

UniSwap v3: An Example

\(p_u=15\)

\(p_d=7\)

\(u=2\)

\(p_0=10\) (that's exogenous, not a choice)

marginal price

\[p^m(s)=\frac{\tilde{a}c}{(\tilde{a}-s)^2}.\]

Finding virtual liquidity factor \(\tilde{a}\)

marginal price

\[p^m(s)=\frac{\tilde{a}c}{(\tilde{a}-s)^2}.\]

\(p_u=15\)

\(p_d=7\)

\(u=2\)

\(p_0=10\) (that's exogenous, not a choice)

= find the right curve

= find the right "\(\tilde{a}\)"

such that \[p^m(u|\tilde{a})=p_u\]

Finding the fourth parameter \(\Delta c(d)\)

\(p_u=15\)

\(p_d=7\)

\(u=2\)

\(d=?\)

required cash deposit \(\Delta c(d)=\) the amount that I pay for \(d\)

marginal price

\[p^m(s)=\frac{\tilde{a}c}{(\tilde{a}-s)^2}.\]

Given \(\tilde{a}\) solves \(\gamma(u)=p_u\), we

  • solve \(p^m(d|\tilde{a})=p_d\) for \(d\)
  • determine \(\Delta c(d|\tilde{a})=\) the required cash

Solutions

  •  virtual liquidity factor: \[\tilde{a}=\frac{u}{1-\sqrt{p_0/p_u}}=u\cdot \frac{\sqrt{p_u}}{\sqrt{p_u}-\sqrt{p_0}}.\]
  • required quantity to reach \(p_d\) \[p^m(-\tilde{d})=\frac{\tilde{a}\tilde{c}}{(\tilde{a}+\tilde{d})^2}=p_d.~~\Leftrightarrow~~d^*=-\tilde{a}(1-\sqrt{p_0/p_d})\]
  • required cash deposit \[\Delta c(\tilde{d})=-\tilde{a}(1 - \sqrt{p_0/p_d})\sqrt{p_0p_d}=-u\sqrt{p_0p_d}\frac{1 - \sqrt{p_0/p_d}}{1 - \sqrt{p_0/p_u}}\]
  • marginal pricing function \[p^m(q)=\frac{\tilde{a}^2p_0}{(\tilde{a}-q)^2}=\frac{u^2p_0p_u}{((u-q)\sqrt{p_u}+q\sqrt{p_0})^2}.\]

For those in the know: These formulae/solutions are exactly the same as those in the UniSwap v3 whitepaper

Numerical example

  • Suppose \(p_0=\$10\).
  • LP is willing to sell up  to \(u=100\)
  • v2 liquidity:
    • Required cash deposit: \(c=100\times 10=1000\)
    • liquidity \(c\cdot a=100\times 1,000\)
  • For v3: suppose willing to supply liquidity in \([\$9,\$11]\)
  • v3 liquidity:
    • virtual liquidity factor: \(\tilde{a}\approx 2,150\)
    • required cash \(c^*=\$1,100\)
  • consider a buy order of \(q=10\)
  • cost per unit 
    • v2: \(=11.11\)
    • v3: \(=10.05\)

Want to read more?

  • A Primer on UniSwap v3 Math: As Easy as 1,2, v3 https://blog.uniswap.org/uniswap-v3-math-primer
  • Elts 2012: Liquidity Math in UniSwap v3
  • Hasbrouck, Riviera, Saleh (2023):
    • UniSwap Liquidity Provision is like a covered call,
    • whereas a standard market (Copeland & Galai JF 1983) is a short strangle (call at the ask, put at the bid)

Deposit Requirements

  • For return \(R\), the following number of shares change hands: \[q=a\cdot(1-\sqrt{R^{-1}}).\]
  • Fraction of share deposit used \[\frac{q}{a}=1-\sqrt{R^{-1}}.\]
  • Fraction of cash used \[\frac{\Delta c ("R")}{c}=\frac{1-\sqrt{R^{-1}}}{\sqrt{R^{-1}}}.\]
  • Example for \(R=.9\) (max allowed price drop \(=10\%\)) \[\frac{\Delta c ("R")}{c}=-5\%.\]
  • \(\Rightarrow\) "real" cash requirements \(\not=\) deposits

\(\Rightarrow \) Need about 5% of the value of the shares deposited -- not 100% --  to cover up to a 10% return decline

An alternative to -10% circuit breaker:

max cash needed based on long-run  past average R \(-\) 2 std

Literature

AMM Literature: a booming field

  • Theory
    • Lehar and Parlour (2021): for many parametric configurations, investors prefer AMMs over the limit order market.

    • Aoyagi and Ito (2021): co-existence of a centralized exchange and an automated market maker;  informed traders react non-monotonically to changes in the risky asset’s volatility

    • Capponi and Jia (2021): price volatility \(\to\) welfare of AMM LPs;  conditions for a breakdown of liquidity supply in the automated system; more convex pricing \(\to\) lower arbitrage rents & less trading.

    • Capponi, Jia, and Wang (2022): decision problems of validators, traders, and MEV bots under the Flashbots protocol.

    • Park (2021):  properties and conceptual challenges for AMM pricing functions

    • Milionis, Moallemi, Roughgarden, and Zhang (2022): dynamic impermanent loss analysis for under constant product pricing.

    • Hasbrouck, Rivera, and Saleh (2022): higher fee \(\Rightarrow\) higher volume

  • Empirics:

    • Lehar and Parlour (2021): price discovery better on AMMs

    • Barbon and Ranaldo (2022): compare the liquidity CEX and DEX; argue that DEX prices are less efficient.

@financeUTM

andreas.park@rotman.utoronto.ca

slides.com/ap248

sites.google.com/site/parkandreas/

youtube.com/user/andreaspark2812/

Learning from DeFi: Are AMMs better? 2025 Conference Version 2

By Andreas Park

Learning from DeFi: Are AMMs better? 2025 Conference Version 2

A conference version of the AMM paper expanded for a full seminar; to be used at Chapman

  • 56