Ariel Feldman

Advised by Dr. Caleb Kemere

A Machine Learning Approach to Predicting Occurrence of Sharp-Wave Ripple Complexes

Figure credit: Etienne Ackermann

What Are Sharp-Wave Ripples?

Colgin et al. Nature Reviews, 2016

Why Do We Need Prediction?

  • Missing approx. 40 - 60% of the SWR
    • Never interrogated ripple generation
    • Validation of in vivo interaction
  • Research context
    • Interact with memory recall & consolidation
    • Analyze impact on decision-making

Objective

Design Challenges

Goal: Apply machine learning techniques towards building a realtime closed loop SWR disruption system.

  • Anomalous event
    • Ripples happen rarely
    • Accuracy not representative
  • Loss value
    • ​Weighting loss misclassifications
    • Custom function
  • Must be realtime applicable

Pre-Train

Refine Weights

Signal vs. Wavelets

Convolutional Architecture

Multi-Layer Perceptron

CA1

CA2

CA3

Weighting Misclassification

No Ripple Ripple Pripple
No Ripple 0 0.25 0.25
Ripple 0.75 0 0.2
Pripple 0.75 0.2 0

Predicted

Actual

Punishing Loss Function

def w_categorical_crossentropy(y_true, y_pred, weights):
    nb_cl = len(weights)
    final_mask = K.zeros_like(y_pred[:, 0])
    y_pred_max = K.max(y_pred, axis=1)
    y_pred_max = K.reshape(y_pred_max, K.shape(y_pred))
    y_pred_max_mat = K.equal(y_pred, y_pred_max)
    for c_p, c_t in product(range(nb_cl), range(nb_cl)):

        final_mask += (K.cast(weights[c_t, c_p],tf.float32) * K.cast(y_pred_max_mat[:, c_p] ,
            tf.float32)* K.cast(y_true[:, c_t],tf.float32))

    return K.categorical_crossentropy(y_pred, y_true) * final_mask

ncce = partial(w_categorical_crossentropy, weights=np.ones((3,3)))
ncce.__name__ ='w_categorical_crossentropy'

How Will We Approach This?

  • More statistically-based learning models
    • Uncover distribution of events in dataset
  • Resampling data
    • Independently construct classifiers
    • Focus more on less accurate classes

Ensemble Classifiers

Figures from Analytics Vidhya

Acknowledgments

Dr. Caleb Kemere

Shayok Dutta

PhD Candidate, Collaborator

Principal Investigator

RUSP Presentation 2019

By Ariel Feldman

RUSP Presentation 2019

  • 622