DESI DR2: Survey Overview,

BAO Cosmological Constraints

Preparation for Full-Shape Analyses

Arnaud de Mattia

CEA Paris-Saclay, Irfu

Waterloo, November 5th

What I'm going to talk about

  • The DESI survey
  • The DR2 BAO analysis
  • The cosmological constraints
  • On-Going: DR2 Full Shape analysis
  • My interests & my projects

\(\simeq 34\) min

\(\simeq 15\) min

from pathlib import Path
import lsstypes as types

dirname = Path('/global/cfs/projectdirs/desi/mocks/cai/mock-challenge-cutsky-dr2/summary_statistics/cutsky/abacus-2ndgen-complete/')
spectrum = types.read(dirname / 'mesh2_spectrum_poles_LRG_z0.4-0.6_NGC_0.h5')
spectrum = spectrum.select(k=slice(0, None, 5)).select(k=(0, 0.2))  # rebin, select 0 < k < 0.2 h/Mpc

window = types.read(dirname / 'window_mesh2_spectrum_poles_LRG_z0.4-0.6_NGC.h5')
window = window.at.observable.match(spectrum)  # rebin "observable" axis to match observable spectrum
print(window.observable)
print(window.theory)
window.value()  # access to 2D window (observable, theory)

covariance = types.read(dirname / 'covariance_mesh2_spectrum_poles_LRG_z0.4-0.6_NGC.h5')
covariance = covariance.at.observable.match(spectrum)
covariance.value()  # access to 2D covariance

Thanks to our sponsors and

72 Participating Institutions!

DESI 3D Map

Physics program
- Galaxy and quasar clustering
- Lyman-alpha forest
- Clusters and cross-correlations
- Galaxy and quasar physics
- Milky Way Survey
- Transients and low-z

DESI 3D Map

Physics program
- Galaxy and quasar clustering
- Lyman-alpha forest

- Clusters and cross-correlations
- Galaxy and quasar physics
- Milky Way Survey
- Transients and low-z

DESI: a stage IV survey

10 years = \(10 \times \)

DESI Y5 galaxy samples

Bright Galaxies: 14M (SDSS: 600k)

0 < z < 0.4

LRG: 8M (SDSS: 1M)

0.4 < z < 1.1

ELG: 16M (SDSS: 200k)

0.6 < z < 1.6

QSO: 3M (SDSS: 500k)

Ly\(\alpha\) \(1.8 < z\)

Tracers \(0.8 < z < 2.1\)

Y5 (DR1-DR2-DR3) \(\sim 40\)M galaxy redshifts!

\(z = 0.4\)

\(z = 0.8\)

\(z = 0\)

\(z = 1.6\)

\(z = 2.0\)

\(z = 3.0\)

From images to redshifts

imaging surveys (2014 - 2019) + WISE (IR)

target selection

spectroscopic observations

spectra and redshift measurements

Mayall Telescope

focal plane 5000 fibers

wide-field corrector

6 lenses, FoV \(\sim 8~\mathrm{deg}^{2}\)

Kitt Peak, AZ

4 m mirror

Mayall Telescope

focal plane 5000 fibers

fiber view camera

ten 3-channel spectrographs

49 m, 10-cable fiber run

Kitt Peak, AZ

Focal plane: 5000 robotic positioners

86 cm

Focal plane: 5000 robotic positioners

Exposure time (dark): 1000 s

Configuration of the focal plane
CCD readout
Go to next pointing

140 s

0.1 mm

Spectroscopic pipeline

wavelength

fiber number

\(z = 2.1\) QSO

\(z = 0.9\) ELG

Ly\(\alpha\)

CIV

CIII

[OII] doublet at \(3727 \AA\) up to \(z = 1.6\)

[OII]

Ly\(\alpha\) at \(1216 \AA\) down to \(z = 2.0\)

DESI data release 2 (DR2)

Observations from May 14th 2021 to April 9th 2024

approved

construction started

first light

survey started

DR1 data sample

DR1 results

DR2 sample secured

DR3

DR2 results

Final survey

- dark time (LRG, ELG, QSO): 7 visits

- bright time (BGS): 5 visits

- 14,000 \(\mathrm{deg}^2\)

2015

16

17

18

19

20

22

23

24

21

25

26

27

DESI data release 2 (DR2)

  • 30M galaxy and QSO redshifts in 3 years of operation
  • 14M used in the DR2 analysis (6M in DR1)
  • Including 820,000 Ly\(\alpha\) QSO at \(z > 2.09\) (420,000 in DR1)
  • \(> 2\times\) increase in number of tracers

higher completeness (deeper)

extended mag cut

Release of DESI DR2 (BAO) results

March 19th 2025

First batch of DESI DR2 cosmological analyses: https://data.desi.lbl.gov/doc/papers/dr2


DESI Collaboration et al. (2025), DESI DR2 Results I: Baryon Acoustic Oscillations from the Lyman Alpha Forest
DESI Collaboration et al. (2025), DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints

Companion supporting papers:

Lodha et al. (2025), Extended Dark Energy analysis

Elbers et al. (2025), Constraints on Neutrino Physics

Andrade et al. (2025), Validation of the DESI DR2 BAO mesurements

Casas et al. (2025), Validation of the DESI DR2 Lyα BAO analysis using synthetic datasets

Brodzeller et al. (2025), Construction of the Damped Lyα Absorber Catalog for DESI DR2 Lyα BAO

DR1 public!

Baryon Acoustic Oscillations

Sound waves in primordial plasma

At recombination (\(z \simeq 1100\))

  • plasma changes to optically thin
  • baryons decouple from photons
  • sound wave stalls after travelling \(r_\mathrm{d}\)

Sound horizon scale at the drag epoch

\(r_\mathrm{d} \simeq 150\; \mathrm{Mpc}\)

standard ruler

Baryon Acoustic Oscillations

CMB (\(z \simeq 1100\))

Sound waves in primordial plasma

At recombination (\(z \simeq 1100\))

  • plasma changes to optically thin
  • baryons decouple from photons
  • sound wave stalls after travelling \(r_\mathrm{d}\)

Sound horizon scale at the drag epoch

\(r_\mathrm{d} \simeq 150\; \mathrm{Mpc}\)

standard ruler

CMB (\(z \simeq 1100\))

LSS

Baryon Acoustic Oscillations

BAO measurements

distribution of galaxies (cartoonish)

\theta_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{M}(z)

transverse comoving distance

sound horizon \(r_\mathrm{d}\)

  • angle on the sky (transverse to the line-of-sight): \(\theta_\mathrm{BAO} = \orange{r_\mathrm{d}}/\green{D_\mathrm{M}(z)}\)
  • \(\Delta z\) (along the line-of-sight): \( \Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z) = \green{H(z)} \orange{r_\mathrm{d}} / c \)

BAO measurements

distribution of galaxies (cartoonish)

\Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z)

Hubble distance \(c/H(z)\)

sound horizon \(r_\mathrm{d}\)

  • angle on the sky (transverse to the line-of-sight): \(\theta_\mathrm{BAO} = \orange{r_\mathrm{d}}/\green{D_\mathrm{M}(z)}\)
  • \(\Delta z\) (along the line-of-sight): \( \Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z) = \green{H(z)} \orange{r_\mathrm{d}} / c \)

BAO measurements

  • angle on the sky (transverse to the line-of-sight): \(\theta_\mathrm{BAO} = \orange{r_\mathrm{d}}/\green{D_\mathrm{M}(z)}\)
  • \(\Delta z\) (along the line-of-sight): \( \Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z) = \green{H(z)} \orange{r_\mathrm{d}} / c \)
  • at multiple redshifts \(z\)

Probes the expansion history (\(\green{D_\mathrm{M}, D_H}\)), hence the energy content (e.g. dark energy)

Absolute size at \(z = 0\): \(H_0 \orange{r_\mathrm{d}}\)

z_1
z_2
z_3

BAO measurements

correlation function

BAO peak

line of sight

monopole

BAO measurements

correlation function

\alpha_\mathrm{iso} \propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}

BAO peak

line of sight

monopole

isotropic

comoving transverse distance

Hubble distance \(c/H(z)\)

sound horizon (standard ruler)

BAO measurements

isotropic

anisotropic

\propto D_{\mathrm{M}}(z) / D_\mathrm{H}(z)

BAO peak

line of sight

line of sight

monopole

quadrupole

\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}

low S/N

BAO detection: \(14.7\sigma\)

0.1 < z < 0.4

0.4 < z < 0.6

0.6 < z < 0.8

0.8 < z < 1.1

1.1 < z < 1.6

Robustness tests

tracers / redshift bins

data vector

Robustness tests

tracers / redshift bins

BAO modelling

Robustness tests

tracers / redshift bins

imaging systematics

Robustness tests

tracers / redshift bins

data splits

Ly\(\alpha\) forest

Ly\(\alpha\) forest

Absorption in QSO spectra by neutral hydrogen in the intergalactic medium: \(\lambda_\mathrm{abs} = (1 + z_\mathrm{HI}) \times 1215.17 \; \AA \)

Transmitted flux fraction \(F = e^{-\tau}\) probes the fluctuation in neutral hydrogen density, \(\tau \propto n_\mathrm{HI} \)

credit: Andrew Pontzen

Correlation functions

Ly\(\alpha\) forest auto-correlation

\(\langle \delta_F(\mathbf{x}) \delta_F(\mathbf{x + s}) \rangle\)

Ly\(\alpha\) forest - QSO cross-correlation

\(\langle \delta_F(\mathbf{x}) Q(\mathbf{x + s}) \rangle\)

Robustness tests

data vector / covariance

Robustness tests

modelling choices

Robustness tests

continuum fitting

Robustness tests

data splits

What's new in the analyses?

Analysis pipelines mostly the same as DR1

Again, blind analyses:

  • discrete tracers: catalog-level blinding
  • Ly\(\alpha\): data vector-level blinding

Subdominant systematics:

  • discrete tracers: \(\sigma_\mathrm{stat+syst} < 1.09 \sigma_\mathrm{stat}\)
  • Ly\(\alpha\): \(<1.06 \sigma_\mathrm{stat}\)

 

DESI DR2 BAO

DESI DR2 BAO measurements

\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}

DESI DR2 BAO

DESI DR2 BAO measurements

\propto (D_{\mathrm{M}}(z) / D_\mathrm{H}(z)) = f(\Omega_\mathrm{m})

DESI DR2 BAO

DESI DR2 BAO measurements

DESI DR2 BAO

DESI DR2 BAO measurements

DESI DR2 BAO

DESI DR2 BAO measurements

DESI DR2 BAO

DESI DR2 BAO measurements

DESI DR2 BAO

DESI DR2 BAO measurements

Consistent with each other,

and complementary

\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.2975 \pm 0.0086 & \mathbf{(3.0\%)} \\ H_{0} r_\mathrm{d} &= (101.54 \pm 0.73) \, [100 \, \mathrm{km} \, \mathrm{s}^{-1}] & \mathbf{(0.7\%)} \end{align*}}_{\textstyle \text{\color{black}{DESI}}}

DESI DR2 BAO

DESI DR2 BAO measurements

  • DESI DR2 BAO fully consistent with DESI DR1
  • Improvement of \(\simeq 40\%\)
  • \(2.3 \sigma\) discrepancy with primary CMB¹ + CMB lensing²

Consistency with other data

1. Planck PR4 CamSpec

2. Planck PR4 + ACT DR6 lensing

Various CMB likelihoods

  • BAO constrains \(\Omega_\mathrm{m}\), \(h \times r_\mathrm{d}(\Omega_\mathrm{b}h^2, \Omega_\mathrm{bc}h^2)\)
  • Calibrating BAO relative distance measurements using BBN \(\Omega_\mathrm{b} h^2\)

 

\(\Lambda\mathrm{CDM}\) constraints

\underbrace{ H_0 = (68.51 \pm 0.58) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}

\(\Lambda\mathrm{CDM}\) constraints

\underbrace{ H_0 = (68.45 \pm 0.47) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{orange}{\text{DESI} + \theta_\ast + \text{BBN}}}
  • BAO constrains \(\Omega_\mathrm{m}\), \(h \times r_\mathrm{d}(\Omega_\mathrm{b}h^2, \Omega_\mathrm{bc}h^2)\)
  • Calibrating BAO relative distance measurements using BBN \(\Omega_\mathrm{b} h^2\)

 

\underbrace{ H_0 = (68.51 \pm 0.58) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
  • Adding very precise CMB acoustic angular scale

\(\sim \Omega_\mathrm{m} h^3\)

\(\sim \Omega_\mathrm{m} h^2\)

\(\Lambda\mathrm{CDM}\) constraints

  • In \(4.5\sigma\) tension with SH0ES (Breuval+24) (independently of the CMB)
  • BAO constrains \(\Omega_\mathrm{m}\), \(h \times r_d(\Omega_\mathrm{b}h^2, \Omega_\mathrm{bc}h^2)\)
  • Calibrating BAO relative distance measurements using BBN \(\Omega_\mathrm{b} h^2\)

 

\underbrace{ H_0 = (68.51 \pm 0.58) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
  • Dark energy fluid

 

 

 

  • No strong preference for dark energy evolution: \(1.7\sigma\) from DESI data alone

Dark Energy Equation of State

\(\Lambda\)

p / \rho = w = w_0 + w_a (1 - a)

pressure

density

CPL

  • Combining DESI + CMB:

Dark Energy Equation of State

\underbrace{ w_{0} = -0.42 \pm 0.21 \qquad w_{a} = -1.75 \pm 0.58 }_{\textstyle \textcolor{orange}{\text{DESI + CMB} \; \implies \; 3.1\sigma}}
  • CMB early-Universe priors: \(2.4\sigma\)
  • Without CMB lensing \(2.7\sigma\)

\(+0.5\sigma\) compared to DR1

Dark Energy Equation of State

Combining all DESI + CMB + SN

\underbrace{ w_{0} = -0.838 \pm 0.055 \qquad w_{a} = -0.62^{+0.22}_{-0.19} }_{\textstyle \textcolor{blue}{\text{DESI + CMB + Pantheon+} \; \implies \; 2.8\sigma}}
\underbrace{ w_{0} = -0.667 \pm 0.088 \qquad w_{a} = -1.09^{+0.31}_{-0.27} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.8\sigma}}
\underbrace{ w_{0} = -0.752 \pm 0.057 \qquad w_{a} = -0.86^{+0.23}_{-0.20} }_{\textstyle \color{green}{\text{DESI + CMB + DES-SN5YR} \; \implies \; 4.2\sigma}}

\(+0.3\sigma\) compared to DR1

Robustness tests

Removing low-\(z\) SN

"Replacing CMB": DESY3 \(3\times2\)pt

\(3.3\sigma\)

Understanding tensions

Understanding tensions

doesn't fit the SN!

Understanding tensions

doesn't fit the BAO!

Understanding tensions

\(w\mathrm{CDM}\) not flexible enough to fit all 3 datasets!

w = -0.970

Understanding tensions

\(w_0w_a\mathrm{CDM}\) fits all 3 datasets!

Dark Energy Evolution (\(w_0w_a\mathrm{CDM}\))

q(z)\equiv{-\frac{\ddot{a}a}{\dot{a}^2}}=\frac{d\ln H}{d\ln(1+z)}-1
Om(z)\equiv\frac{h^2(z)-1}{(1+z)^3-1}
f_{\rm DE}(z) \equiv \frac{\rho_\mathrm{DE}(z)}{\rho_\mathrm{DE,0}}

phantom

Dark Energy Evolution

best described by CPL

\(4\sigma\)

Also considered: Gaussian Processes, similar evolution obtained

Sum of neutrino masses

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO

Sum of neutrino masses

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, which favors low \(\Omega_\mathrm{m}\)

\sum m_\nu < 0.064 \, \mathrm{eV} \; (95\%, \text{DESI + CMB})

Sum of neutrino masses

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, which favors low \(\Omega_\mathrm{m}\)

\sum m_\nu < 0.064 \, \mathrm{eV} \; (95\%, \text{DESI + CMB})

Limit relaxed for \(w_0w_a\mathrm{CDM}\):

DESI+CMB: \(\sum m_\nu < 0.163 \, \mathrm{eV} \; (95\%)\)

DESI+CMB+DESY5: \(< 0.129 \, \mathrm{eV} \; (95\%)\)

Summary

DESI already has the most precise BAO measurements ever (40% more precise than DR1)

 

DESI in mild, growing, tension with CMB (\(2 - 3\sigma\)) and SN \((\sim 2\sigma)\) when interpreted in the ΛCDM model

 

Tightest upper bound on \(\sum m_\nu\), increasing tension with neutrino oscillations

 

Evidence for time-varying Dark Energy equation of state has increased with the DR2 BAO data by \(0.3\sigma\): CMB: \(3.1\sigma\), SN: \(2.8 - 4.2\sigma\), resolves \(\sum m_\nu\) tension

What I'm going to talk about

  • The DESI survey
  • The DR2 BAO analysis
  • The cosmological constraints
  • On-Going: DR2 Full Shape analysis
  • My interests & my projects

\(\simeq 15\) min

Full Shape Analysis

We fit the "full shape" (FS) of the galaxy power spectrum multipoles

shape

(\( \Omega_\mathrm{cdm} h^2, \Omega_\mathrm{b} h^2, n_\mathrm{s}, \sum m_\nu \))

Full Shape Analysis

RSD

observed redshift = Hubble flow and peculiar velocities (RSD = "redshift space distortions")

v_\mathrm{pec} \propto f\sigma_8

shape

(\( \Omega_\mathrm{cdm} h^2, \Omega_\mathrm{b} h^2, n_\mathrm{s}, \sum m_\nu \))

growth of structure \(f\sigma_8\) sensitive to the theory of gravity and dark energy

Full Shape Analysis

real-space

Credit: Mathilde Pinon

Full Shape Analysis

redshift-space

Credit: Mathilde Pinon

Full Shape Analysis

In November 2024: DR1 Full-Shape results (probing the growth of structure)

\(S_8 = \sigma_8(\Omega_\mathrm{m} / 0.3)^{0.5}\)

General Relativity

DR2 Full Shape analysis

To the power spectrum \(\propto |\delta(\mathbf{k})|^2\)...

projection on \(\mathcal{L}_\ell(\hat{k} \cdot \hat{z})\)

DR2 Full Shape analysis

... we're adding the bispectrum \(\langle\delta(\mathbf{k_1})\delta(\mathbf{k_2})\delta(\mathbf{k_3})\rangle\)!

projection on \(\mathcal{L}_\ell(\hat{k}_3 \cdot \hat{z})\)

non-linearity of clustering

+

projection on \(\mathcal{L}_\ell(\hat{k} \cdot \hat{z})\)

DR2 Full Shape analysis

... we're adding the bispectrum \(\langle\delta(\mathbf{k_1})\delta(\mathbf{k_2})\delta(\mathbf{k_3})\rangle\)!

Sugiyama+18 "TripoSH" basis

non-linearity of clustering

S_{\ell_1 \ell_2 L}(\hat{r}_1, \hat{r}_2, \hat{n}) = H_{\ell_1\ell_2L}^{-1} \sum_{m_1, m_2, M} \begin{pmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & M \end{pmatrix} y_{\ell_1 m_1}(\hat{r}_1) y_{\ell_2 m_2}(\hat{r}_2) y_{L M}(\hat{n})

+

projection on \(\mathcal{L}_\ell(\hat{k} \cdot \hat{z})\)

projection on:

DR2 mock challenge

Tests of different models with N-body simulation boxes

PT

semi-PT

simulation-based

PRELIMINARY

Why is Full Shape challenging?

\(F(\mathbf{r}) = n_g(\mathbf{r}) - \bar{n}(\mathbf{r}) = \bar{n}(\mathbf{r})\delta_g(\mathbf{r})\)

selection function

observed density of galaxies

Full shape of the galaxy power spectrum (and now bispectrum!) sensitive to:

  • the survey geometry

 

 

 

\(F(\mathbf{r}) = n_g(\mathbf{r}) - \bar{n}(\mathbf{r}) = \bar{n}(\mathbf{r})\delta_g(\mathbf{r})\)

selection function

observed density of galaxies

Full shape of the galaxy power spectrum (and now bispectrum!) sensitive to:

  • the survey geometry

 

 

 

Why is Full Shape challenging?

\bar{n}_\mathrm{rad}(z)
\bar{n}_\mathrm{sky}(\mathrm{R.A.}, \mathrm{Dec.})

\(\propto\) number of (random) galaxy pairs as a function of separation

smoothing effect

Full shape of the galaxy power spectrum (and now bispectrum!) sensitive to:

  • the survey geometry

 

 

 

Why is Full Shape challenging?

\(\langle P_o(k) \rangle = W(k, k^\prime) P_t(k^\prime)\)

"window matrix"

Full shape of the galaxy power spectrum (and now bispectrum!) sensitive to:

  • the survey geometry
  • (mis)specification of the selection function \(\bar{n}\) = "observational systematics"

 

 

 

Why is Full Shape challenging?

Full shape of the galaxy power spectrum (and now bispectrum!) sensitive to:

  • the survey geometry
  • (mis)specification of the selection function \(\bar{n}\) = "observational systematics"
    1. photometry: "how many targets are selected depending on observing conditions" (e.g. Rosado-Marin+25)
    2. fiber assignment: "not all targets receive a fiber" (e.g. Bianchi+25)
    3. spectroscopy: "not all redshifts are measured reliably" (e.g. Krolewski+25) and "uncertainty on the redshift measurement" (e.g. Yu+25)

 

 

 

Why is Full Shape challenging?

Fiber assignment

Groups of galaxies too close to each other cannot all receive a fiber

\(0.05^\circ \simeq\) positioner patrol diameter

focal plane

Fiber assignment: mitigation

\(\theta\)-cut = remove all pairs \(< 0.05^\circ\)

w/ fiber assignment

Mathilde Pinon

Fiber assignment: mitigation

New window matrix \(W^\mathrm{cut}\); \(\langle P_o(k) \rangle = W^\mathrm{cut}(k, k^\prime) P_t(k^\prime)\)

Very non diagonal: let's "rotate" it

 

more compact

Fiber assignment: mitigation

pairwise inverse probability weights (PIP) and angular upweighting (AUW) (e.g. Bianchi and Percival 2017)

w_\mathrm{PIP} = 1/\text{prob. of pair being selected}

well-corrected

What else?

With DR2 - stay tuned!

  • Full-Shape from power spectrum and bispectrum
  • Primordial non-Gaussianity
  • x CMB lensing
  • Low-\(z\) growth of structure with peculiar velocities
  • DR1-DR2-DR3: 5-year nominal survey, almost completed
  • DR4-DR5: ~ 3.5-year transition period
  • DESI-II: Dark Matter, high-density and high-z programs

What else?

  • broadly speaking, DESI galaxy clustering and cosmology pipeline
  • leveraging Python library JAX (GPU, jit, autodiff) to do cool stuffs
  • faster \(P(k), B(k)\) estimators with multi-GPU

Personal interests

Forward-modeled window matrix \(W(k_o, k_t) = dP_o(k_o)/dP_t(k_t)\) to include "survey complexity"

RIC

\(\sigma/\sqrt{1000}\)

directly measured from data

\(\Rightarrow \int d^2\hat{r} F(\hat{r}) = 0\)

\(\equiv\) Radial Integral Constraint (RIC)

Window matrix

\overbrace{\bar{n}_\mathrm{rad}(z)\bar{n}_\mathrm{sky}(\mathrm{R.A.}, \mathrm{Dec.})}{}
F(\mathbf{r}) = n_g(\mathbf{r}) - \bar{n}(\mathbf{r})

with just 25 mocks

  • "brute-force" algorithm: create mocks with \(P_t\) zero everywhere except for given \(k_t\) \(\Rightarrow\) \(W(k_o, k_t)\) given by \(<P_o(k_o)>\)
  • control variate: computing the "exact" window matrix for \(\delta \rightarrow \delta W\) is tractable; then one can just estimate the window matrix of the difference of \(P_o(k)\) with and without RIC

Window matrix

Pair counts on the GPU

  • for PIP/AUW weights (mitigation of fiber assignment)
  • extended to galaxy-shear and shear-shear correlations: an order of magnitude faster than state-of-the-art

Calum Murray

Pair counts on the GPU

# Initialize distributed environment
jax.distributed.initialize()
from cucount.jax import BinAttrs, count2
# Define binning and line-of-sight
battrs = BinAttrs(s=np.linspace(1., 201, 201), mu=(np.linspace(-1., 1., 201), 'midpoint'))
# Create sharding mesh: divides array on multiple GPUs
mesh = Mesh(jax.devices(), axis_names=('x',))
# Define parallel pair-count function
count2_parallel = shard_map(
    lambda p1, p2: jax.lax.psum(count2(p1, p2, battrs=battrs), axis_name='x'),
    mesh=mesh,
    in_specs=(P('x'), P(None)),  # Shard only one input
    out_specs=P(None)
)
# Run distributed pair counts
counts = count2_parallel(particles1, particles2) 
jax.distributed.shutdown()

Looking forward: triplet counts? autodiff for fitting data at small scale? (e.g.: HOD fits)

Field-level inference

Fit the observed (discretized) field

Sample the initial cosmic density field

initial density

final density

Hugo Simon, co-supervisor François Lanusse

Field-level inference (benchmark)

gradient-based samplers

unadjusted

more efficient

Field-level inference (benchmark)

gradient-based samplers

more efficient

efficiency almost constant with dimension

\(10^6\) parameters \(\simeq 8\) GPU hours

Field-level inference (PNG)

Goal: measure primordial non-Gaussianity with DESI data

first checking:

  • self-specified model
  • N-body simulations
  • observational systematics

Conclusions

  • DESI data taking is running incredibly smoothly. Survey extended to 8 years, 63 M extra-galactic redshifts
  • DESI delivered BAO results with DR2: hints of evolving dark energy?
  • Full Shape analyses to constrain structure growth and modified gravity
  • Including bispectrum (3-point correlation function)
  • Personal interests:
    • develop algorithms and GPU-accelerated codes to facilitate these standard analyses
    • develop alternative "field-level inference" analysis

Back-up

Q&A

  1. Impact of Planck likelihood, update with ACT DR6
  2. Neutrino mass hierarchy / Effective neutrino mass
  3. Comment on Efstathiou+25
    1. BAO DR2/DR1 vs CMB tension?
    2. OK to combine with SN?
  4. Solutions to the BAO DR2/DR1 vs CMB "tension"?​
    • Optical depth \(\tau\)
    • Early Dark Energy

Planck likelihoods

Preference for \(w_0w_a\mathrm{CDM}\) robust to various Planck likelihoods:

- CamSpec PR4 (baseline)

- Plik PR3

- LiLLiPoP-LolliPoP (PR4)

Planck likelihoods

Upper limit on the sum of neutrinos masses depends on the choice of CMB likelihood. With DESI + CMB:

- \(\sum m_\nu < 0.064 \, \mathrm{eV} \; (95\%, \text{CamSpec PR4})\)

- \(\sum m_\nu < 0.069 \, \mathrm{eV} \; (95\%, \text{Plik PR3})\)

- \(\sum m_\nu < 0.077 \, \mathrm{eV} \; (95\%, \text{L-H})\)

Combining with ACT DR6

ACT released DR6 CMB measurements and cosmological constraints the day before DESI

Discrepancy with DESI:

  • PR4: \(2.3\sigma\)
  • ACT DR6: \(2.7\sigma\)
  • PR4+ACT: "best" CMB constraints with PR4 on \(\ell < 2000 \) TT, \(< 1000\) TE, EE: \(2.0 \sigma\)

higher \(\Omega_\mathrm{m}\)

higher \(\Omega_\mathrm{bc}h^2, \Omega_\mathrm{b}h^2\)

\(\Omega_\mathrm{b}h^2\) in-between

different degeneracy directions

lower \(\Omega_\mathrm{bc}h^2, \Omega_\mathrm{m}\)

PR4+ACT with same \(\ell\) cuts as P-ACT: increases ACT weight

\(\Rightarrow\) consistent with P-ACT

Combining with ACT DR6

 When including SN, reference for \(w_0w_a\mathrm{CDM}\) is stable w.r.t. CMB dataset

Combining with ACT DR6

Limit at \(95\%\) on \(\sum m_\nu\):

DESI+PR4: \(< 0.064\,\mathrm{eV}\)

 

DESI+ACT: \(< 0.073\,\mathrm{eV}\)

 

DESI+P-ACT: \(< 0.077\,\mathrm{eV}\)

 

PR4+ACT: \(< 0.061\,\mathrm{eV}\)

​low-\(\ell\) Sroll2 EE likelihood (instead of SimAll)

Calabrese+25 with DESI DR1: \(<0.83\,\mathrm{eV}\)

Sum of neutrino masses

Neutrino mass oscillations constrain \(\Delta m_{21}^2\) and \(\vert \Delta m_{31}^2\vert\)

\(\sum m_\nu = m_1 + \sqrt{m_1^2 + \Delta m_{21}^2} + \sqrt{m_1^2 + \Delta m_{31}^2}\)

\(m_3 + \sqrt{m_3^2 - \Delta m_{31}^2} + \sqrt{m_3^2 + \Delta m_{32}^2}\)

prior NO/IO: 0.5/0.5

\sum m_\nu < 0.101 \, \mathrm{eV} \; (95\%, \text{NO})
\sum m_\nu < 0.133 \, \mathrm{eV} \; (95\%, \text{IO})

Normal Ordering (NO)

Inverted Ordering (IO)

\Rightarrow P(\mathrm{NO}) = 1 - P(\mathrm{IO}) = 0.91

Sum of neutrino masses

Limit relaxed for \(w_0w_a\mathrm{CDM}\):

DESI+CMB: \(\sum m_\nu < 0.163 \, \mathrm{eV} \; (95\%)\)

DESI+CMB+DESY5: \(< 0.129 \, \mathrm{eV} \; (95\%)\)

\(w_0w_a\) shifts to positive \(\sum m_\nu\)

profile likelihood

adding SN shifts the minimum back towards negative \(\sum m_\nu\)

Effective neutrino mass

Effective neutrino mass \(\sum m_{\nu, \mathrm{eff}}\) that can be extended to negative values (through negative energy density)

DESI+CMB:

\(\sum m_{\nu, \mathrm{eff}} = -0.101_{-0.056}^{+0.047} \, \mathrm{eV} \; (68\%)\)
\(\sum m_{\nu} > 0.059\,\mathrm{eV}\) disfavored at \(3\sigma\)

Effective neutrino mass

\(\sum m_{\nu, \mathrm{eff}} = -0.11_{-0.14}^{+0.12} \, \mathrm{eV}\) preferred by the CMB alone

Effective neutrino mass

\(\sum m_{\nu, \mathrm{eff}} < 0\) weakens the preference for \(w_0w_a\mathrm{CDM}\) (only when inc. CMB)

DESI DR2 / DR1 vs Planck

\(\mathcal{D}_\parallel, \mathcal{D}_\perp = \mathrm{Rot}(D_\mathrm{H}/r_\mathrm{d}, D_\mathrm{M}/r_\mathrm{d})\) with \(\mathcal{D}_\perp\) best constrained by Planck

following Efstathiou+25

DESI DR2 / DR1 vs Planck

following Efstathiou+25

turned into \(\omega_\mathrm{bc}\) constraint

DR2 more consistent

DESI DR2 / DR1 vs Planck

\(\omega_\mathrm{m}\)

  • \(2.3 \sigma\) discrepancy with primary CMB + CMB lensing

DESI DR2 / DR1 vs Planck

following Efstathiou+25

With CMB = low-\(\ell\) PR3  + CamSpec PR4 + (ACT+PR4) lensing

\(H_0r_d, \Omega_\mathrm{m}\) space

BAO \(\alpha\) space

\(\mathcal{D}_\perp\)

\(\mathcal{D}_\parallel\)

\(\omega_\mathrm{bc}\)

DR2

DR1

\(2.3\sigma\)

\(2.2\sigma\)

\(2.2\sigma\)

\(1.8\sigma\)

\(1.9\sigma\)

\(2.1\sigma\)

\(0.8\sigma\)

\(2.6\sigma\)

\(2.7\sigma\)

\(1.3\sigma\)

\(2.1\sigma\)

\(2.3\sigma\)

no isotropic BAO

following Efstathiou+25

\(\mathcal{D}_\perp, \mathcal{D}_\parallel\) space

\(2.2\sigma\)

\(2.1\sigma\)

rotation

multiple counting of Planck uncertainty

DESI DR2 / DR1 vs Planck

following Efstathiou+25

\(H_0r_d, \Omega_\mathrm{m}\) space

BAO \(\alpha\) space

\(\mathcal{D}_\perp\)

\(\mathcal{D}_\parallel\)

\(\omega_\mathrm{bc}\)

DR2

DR1

\(1.9\sigma\)

\(1.9\sigma\)

\(1.9\sigma\)

\(1.6\sigma\)

\(1.7\sigma\)

\(2.0\sigma\)

\(0.8\sigma\)

\(2.2\sigma\)

\(2.3\sigma\)

\(1.3\sigma\)

\(1.9\sigma\)

\(2.1\sigma\)

no isotropic BAO

\(\mathcal{D}_\perp, \mathcal{D}_\parallel\) space

\(1.9\sigma\)

\(2.0\sigma\)

With CMB = low-\(\ell\) PR3  + CamSpec PR4

Combining with DESY5 SN?

agreement between DESI BAO and DESY5 data at \(\sim 1.5\sigma\) level

\Lambda\mathrm{CDM}

In the overlapping \(z\)-range, DESI DR2 BAO and DESY5 SN agree

\(\simeq 0.9 \sigma\)

Combining with DESY5 SN?

Combining with DESY5 SN?

Combining with DESY5 SN?

\(\Delta \chi^2 \simeq 5.5\)

\(\chi^2_\mathrm{min} \simeq 1632, \mathrm{ndof} = 1829\)

Combining with DESY5 SN?

assuming \(z > 0.1\) fit, including the \(z < 0.1\) SN data

\(\Rightarrow\) \(\Delta \chi^2 = 186, \mathrm{ndof} = 197\)

full DESY5 best \(\chi^2\) barely changes between \(z > 0.1\) and full fit

Combining with DESY5 SN?

assuming \(z > 0.1\) fit, including the \(z < 0.1\) SN data

\(\Rightarrow\) \(\Delta \chi^2 = 186, \mathrm{ndof} = 197\)

full DESY5 best \(\chi^2\) barely changes between \(z > 0.1\) and full fit

Optical depth \(\tau\)

\(\tau = 0.09\) \(3\sigma \Rightarrow 1.5\sigma\) for \(w_0w_a\mathrm{CDM}\)

3-5\(\sigma\) tension in low-\(\ell\) Planck polarization

Strengthens the case for future CMB experiments

\(3\sigma \Rightarrow 1.5\sigma\)

Early Dark Energy

  • Minimally-coupled scalar field for an early-type modification of the expansion history (changes \(r_\mathrm{d}\))
  • Solves tension with local Hubble measurements, but less favored with SN
CMB+BAO
+Union3SN

EDE

\(w_0w_a\)

-7.4

-7.5

-12.5

-17.4

\(\Delta \chi^2\) / \(\Lambda\mathrm{CDM}\)

Dark Energy Evolution

no phantom crossing

Dark Energy Evolution

coupling

\(m² < 0\): hilltop

Dark Energy Evolution

MG

But adds a fifth force, inconsistent with solar system constraints

Coupling between DE/DM instead? But see Linder+25

Other datasets

Analysis pipeline mostly the same as DR1

Again, blind analysis to mitigate observer / confirmation biases (catalog-level blinding)

Anisotropic BAO measurements for QSO (and low-\(z\) ELG)

Minor updates:

- revised min fitting range (\(60 < s / [\mathrm{Mpc}/h] < 150\))

- revised systematic budget (theory, fiducial cosmology, HOD): \(\sigma_\mathrm{stat+syst} < 1.09 \sigma_\mathrm{stat}\)

Many more robustness tests

What's new in the BAO analysis?

BAO reconstruction

  • Non-linear structure growth and peculiar velocities smear (and slightly displace) the BAO peak
  • Reconstruction: estimate Zeldovich displacements from observed field and move galaxies back \(\rightarrow\) refurbishes the ruler (improves precision and accuracy)

Analysis pipeline mostly the same as DR1

Again, blind analysis to mitigate observer / confirmation biases (data vector-level blinding)

Improved modelling of metals and continuum-fitting distortions

What's new in the Ly\(\alpha\) analysis?

Analysis pipeline mostly the same as DR1

Again, blind analysis to mitigate observer / confirmation biases (data vector-level blinding)

Improved modelling of metals and continuum-fitting distortions

New catalog of Damped Lyman-\(\alpha\) systems (masked)

Improved mocks and associated studies

Revised fitting range and priors on nuisance parameters

Include a small (0.3%) theory systematic uncertainty for non-linear BAO shift, \(\sigma_\mathrm{stat+syst} < 1.06 \sigma_\mathrm{stat}\)

What's new in the Ly\(\alpha\) analysis?

\(\Lambda\mathrm{CDM}\) constraints

  • DESI \(\Omega_\mathrm{m}\) lower than the CMB (\(1.8\sigma\)) 
  • DESI \(\Omega_\mathrm{m}\) lower than SN:
    • Pantheon+: \(1.7\sigma\)
    • Union3: \(2.1\sigma\)
    • DESY5: \(2.9\sigma\)

Understanding tensions

DESI data release 1 (DR1)

Observations from May 14th 2021 to June 12th 2022

DESI data release 2 (DR2)

asgn. comp. DR1 # good z
DR1
asgn. comp. DR2 z. comp
DR2
# of good z DR2
BGS 64% 0.3M 76% 99% 1.2M
LRG 69% 2.1M 83% 99% 4.5M
ELG 35% 2.4M 54% 74% 6.5M
QSO 87% 1.2M 94% 68% 2M

more observations

Ly\(\alpha\) forest

Pre/post DESI

DESI vs BOSS/eBOSS

LRG2 (worst case)

\(2.8\sigma \, (\mathrm{DR1}) \Rightarrow 2.3\sigma \, (\mathrm{DR2})\)

Dark Energy Evolution

no phantom crossing

Null Energy Condition

DR2 footprint

Full Shape measurements

clustering

We fit the "full shape" (FS) of the galaxy power spectrum multipoles

DR1 Full Shape + BAO

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.2962\pm 0.0095 & \mathbf{(3.2\%)} \\ \sigma_8 &= 0.842\pm 0.034 & \mathbf{(4.0\%)} \\ H_0 &= (68.56\pm 0.75) \, {\rm km\,s^{-1}\,Mpc^{-1}} & \mathbf{(1.1\%)} \end{align*}}_{\textstyle \text{DESI + BBN + $n_{s10}$}}

\(\omega_\mathrm{b}\): BBN, \(n_\mathrm{s} \sim \mathcal{G}(0.9649, 0.042^2)\)

DR1 Full Shape + BAO

\(S_8\) constraints

  • ​Consistency with SDSS
  • In agreement with CMB
  • Weak lensing prefers lower \(S_8\), but still consistent
\underbrace{ S_8 = 0.836 \pm 0.035 }_{\textstyle \text{\color{blue}{DESI + BBN + $n_{s10}$}}}

\(S_8 = \sigma_8 (\Omega_\mathrm{m} / 0.3)^{0.5}\) best constrained by weak lensing surveys

Modified gravity constraints

Perturbed FLRW metric

\(ds^2=a(\tau)^2[-(1+2\orange{\Psi})d\tau^2+(1-2\orange{\Phi})\delta_{ij}dx^i dx^j]\)

At late times:

(mass) \(k^2\orange{\Psi} = -4\pi G a^2 \green{\mu(a,k)} \blue{\sum_i\rho_i\Delta_i}\)

(light)  \(k^2(\orange{\Phi} + \orange{\Psi})=-8\pi G a^2 \green{\Sigma(a,k)} \blue{\sum_i\rho_i\Delta_i}\)

gravitational potentials

density perturbations

\mu(a) = 1 + \frac{\Omega_\Lambda(a)}{\Omega_\Lambda} \green{\mu_0}
\Sigma(a) = 1 + \frac{\Omega_\Lambda(a)}{\Omega_\Lambda} \green{\Sigma_0}

Modified gravity constraints

\(\Sigma_0\) constrained by

- CMB (ISW and lensing)

- galaxy lensing

\underbrace{\begin{align*} \mu_0 &= 0.04\pm 0.22 \\ \Sigma_0 &= 0.045\pm 0.046 \end{align*}}_{\textstyle \text{\color{purple}{DESI + CMB-nl + DESY3 ($3\times 2$-pt)}}}
\underbrace{ \mu_0 = 0.11^{+0.45}_{-0.54} }_{\textstyle \text{\color{blue}{DESI + BBN + $n_{\mathrm{s}10}$}}}

compared to CMB-nl + DESY3 (3x2pt) only: \(\sigma(\mu_0) / 2.5\), \(\sigma(\Sigma_0) / 2\)

DESI constrains

Window matrix: another look

Let's just Taylor expand the observed power spectrum \(P_o\) as a function of the theory \(\theta_t\) (e.g. \(P_t\)) around fiducial values:

P_o = P_o(\theta_t^\mathrm{fid}) + \left.\frac{d P_o}{d \theta_t}\right\rvert_\mathrm{fid} (\theta_t - \theta_t^\mathrm{fid})

could come from the average of many mocks

then the window matrix \(\left.\frac{d P_o}{d \theta_t}\right\rvert_\mathrm{fid}\) just multiplies the deviation w.r.t. the fiducial

\(\Rightarrow\) in the limit that \(\theta_t^\mathrm{fid}\) is close to the truth, just require \(\left.\frac{d P_o}{d \theta_t}\right\rvert_\mathrm{fid}\) to be as accurate as the covariance matrix! (i.e. ~ only impacts the final \(\theta_t\) uncertainties)

Baryon acoustic oscillations (BAO)

Credits: Julian Bautista

Waterloo_November2025

By Arnaud De Mattia

Waterloo_November2025

  • 36