Data Visualization
Brittany Fong | @bfongdata
bfongdata.com
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4111235/Data_Women_Square_no_background.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4111236/Tab_Ambassador.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4111238/tableau-logo.png)
Tableau Ambassador
DC User Group
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4742502/Square_Logo.png)
Why data viz?
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730873/trending1.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730875/trending_2.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730876/trending_3.png)
Data Viz Tools
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2735411/logo.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130814/Logo_D3.svg.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130812/R_logo.svg.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130810/qlik-logo-v2.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130809/microstrategy.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130808/excel-png-office-xlsx-icon-3.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130811/PowerBI_Logo.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130807/python_icon.png)
PowerBI
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3135046/27936.png)
A History of Data Visualization
1844 The New York Daily Tribune
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3147481/Screen_Shot_2016-10-21_at_10.32.38_PM.png)
1968 New York Times
2012 Five Thirty Eight
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3147473/nate-silver-perfect-prediction.jpg)
2016 The Upshot
1900 Chicago Tribune
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3147378/CR-CC9xUYAA5k5g.png)
2013 Periscopic
1901 The Chicago Tribune
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3147495/Screen_Shot_2016-10-21_at_10.40.15_PM.png)
2016 NFL Game Center
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3147508/Screen_Shot_2016-10-21_at_10.50.21_PM.png)
2016 Five Thirty Eight
Question
Data
Audience
Creation
Building a data viz
Start with a question
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2647670/questions.png)
What is the purpose/goal of the visualization?
What questions are the visualizations going to answer?
How should people feel?
What data do you have?
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2647876/Excel_Data.png)
Is there a unique identifier?
What level of detail is the data at?
Do you need to bring in additional data/tables?
What is the quality of the data?
Cater to your audience
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2648024/big_bang_theory.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2648026/doctors.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2648027/executives.gif)
What level of detail do they want to see?
How complex can the visualizations be?
Create a sketch
Pull out a pencil and paper to get the ideas flowing
How will the visualization be viewed? (mobile, print, web)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2647770/sketch_3.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2647772/Sketch_1.jpeg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2647775/sketch_2.png)
Common Data Visualization Graphs
Bar Chart
Used for: Comparing categories
Other variations: stacked bar, nested bar, paired bar, multiple bars
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153376/bar_chart.jpg)
Line Graph
Used for: Viewing trends over time
Other variations: year over year trends, add trend line
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153377/Line_Graph.jpg)
Scatterplot
Use for: Comparing two measures to see how they relate to each other
Other variations: add trend line, create quadrants
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153386/Scatter.jpg)
Histogram
Use for: Viewing the distribution of values
Ex: Most common number of units sold per order (3 and 2)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153392/histogram.jpg)
Heat Map
Used for: Comparing values by a set color palette
Other Variations: maps
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153414/Heat_Map.jpg)
Cartogram
Used for: Geographically mapping a value by color
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153398/Map.jpg)
Less common Data Visualization Graphs
Gantt Chart
Used for: Viewing duration over time
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153514/Gantt.jpg)
Bump Chart
Used for: Viewing category's rank over time
Other variations: slope chart (comparison from beginning to end)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153562/bumpchart.jpg)
Unit Chart
Used for: Viewing overall trends in addition to unit level details
Other variations: scatterplot, dot plot, strip plot
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153682/Screen_Shot_2016-04-27_at_10.04.12_PM.png)
Bullet Graph
Used for: Comparing two measures
Other variations: Add indicator colors to background
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3153712/Bullet.jpg)
Data Visualization Best Practices
Why are best practices important?
So we don't end up here!
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730829/Screen_Shot_2016-06-09_at_7.57.15_PM.png)
viz.wtf
Ease of Understanding
Make the visualization as easy as possible to read and understand
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730113/Horizontal_bar_graph.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730110/Vertical_Bar_Graph.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730132/rotate_arrow.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4742515/Screen_Shot_2018-03-26_at_8.26.29_AM.png)
Axes
Keep axes clear and consistent
Avoid skipping numbers and Always start from 0
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730179/FN_line_graph.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2732720/Dashboard_1.png)
Color
Accessibility - Color Blind (508 Compliant) and make sure your colors have enough contrast (black and white print out)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730812/635830079876994009-1113-jets.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730813/Bills-Jets-Color-Rush-Colorblind-view.jpg)
Clear Labels
Titles, sub-titles, axes, legends, data source, outliers (if necessary)
Try the 30 second test
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730955/tumblr_nv5h40nXEo1sgh0voo1_1280.png)
Context
How do I know if this number is good or bad? I need some sort of reference.
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2767205/sales.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2767206/sales_context.png)
vs
Keep it simple
Don't add colors when it's not necessary
If it doesn't help explain the visual get rid of it
Don't add too many labels
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730909/Picture1.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730910/Sheet_5.png)
Check your work
Does the visualization logically make sense? If you must use a pie chart it better add up to 100%
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730937/pie_foxnews.jpg)
Use the right graph
Jon Schwabish's Graphic Continuum
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730880/ContinuumDesktop_BigCargo.png)
What can I do?
Style Guides with Brand compliant color palettes
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730840/Screen_Shot_2016-06-09_at_8.06.31_PM.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/2730842/Screen_Shot_2016-06-09_at_8.07.42_PM.png)
Example Dashboards
Title Text
Lindsey Poulter @datavizlinds
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4743299/INVISIBLE_WALLS.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4743304/Screen_Shot_2018-03-26_at_11.45.30_AM.png)
Marc Soares @marc_soares
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4743310/Main_Dashboard.png)
Chantilly Jaggernauth @chanjagg
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4743323/Who_drinks_the_most_booze_.png)
Brittany Fong
@bfongdata
Data Visualization Resources
Color palettes
pinterest.com
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3145981/Screen_Shot_2016-10-21_at_1.39.13_PM.png)
colorbrewer2.org
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3145986/kuler-1.png)
color.adobe.com
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3145997/vischeck.jpeg)
vischeck.com
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3146005/Screen_Shot_2016-10-21_at_1.44.57_PM.png)
Data wrangling
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3146029/parsehub.com.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3146030/importio.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3146028/remote-api.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3130807/python_icon.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/3146039/logo.png)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4742519/alteryx.jpg)
![](https://s3.amazonaws.com/media-p.slid.es/uploads/517187/images/4742520/2017-12-09_10-05-20-e1512774449546.png)
Data viz examples and information
-
Dear Data (dear-data.com)
-
Makeover Monday (http://www.makeovermonday.co.uk/)
-
Flowing Data (flowingdata.com)
-
The Functional Art (http://www.thefunctionalart.com/)
-
Storytelling with Data (http://www.storytellingwithdata.com/gallery/)
-
Tableau Public (public.tableau.com)
Data viz resources
-
Tableau Website Training Videos
-
(https://www.tableau.com/learn/training)
-
-
Tableau Community (forums, knowledge base, white papers)
-
https://www.tableau.com/learn/training
-
-
Tableau User Groups (local, internal, and subject specific)
-
dctug.com
-
-
Twitter
Visualize your data and influence the world!
Brittany Fong
bfongdata.com
bfongdata@gmail.com
Data Visualization
By bfongdata
Data Visualization
- 1,471