Initial Conditions Reconstruction with Stochastic Interpolants
[Video Credit: N-body simulation Francisco Villaescusa-Navarro]
Carolina Cuesta-Lazaro
IAIFI Fellow, MIT / Center for Astrophysics
Adrian E. Bayer, Michael S. Albergo, Siddharth Mishra-Sharma, Chirag Modi, Daniel J. Eisenstein
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
Initial Conditions
early Universe
Cosmological Parameters
theory
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
?
Observed Density Field
today
Hamiltonian Monte Carlo
1) Likelihood is intractable for realistic scenarios, but can get samples from simulator
2) Forward model has to be differentiable
(and relatively fast)
3) Not amortized
["Field-Level Inference with Microcanonical Langevin Monte Carlo" Bayer, Seljak, Modi arXiv:2307.09504]
["Bayesian physical reconstruction of initial conditions from large scale structure surveys" Jasche, Wandelt arXiv:1203.3639]
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
["Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models" Legin et al arXiv:2304.03788]
Continuity Equation
Diffusion, Flow matching, Interpolants...
[Image Credit: "Understanding Deep Learning" Simon J.D. Prince]
Data
Base
Continuous Time Normalizing Flows
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
Missing pieces:
Simulation-free loss
SDE formulation
Can we regress the velocity field?
Simulation-free!
Interpolant
Expectation over all possible paths that go through xt
["Stochastic Interpolants: A Unifying framework for flows and diffusion" Albergo et al arXiv:2303.08797]
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
Stochastic Interpolants
Stochastic
Generative SDE
Generative SDE
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
3D U-Net
True
Reconstructed
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
Initial Conditions
Finals
Stochastic Interpolants
NF
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
(Marginalizing over parameters)
1) Likelihood not necessarily Gaussian
2) Forward model no need differentiable
3) Amortized
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
Sampling entire consistent trajectories, rather than just Initial Conditions
Scaling to large observed volumes
Training on small volume simulations
Carolina Cuesta-Lazaro IAIFI/MIT @ ML4PS 2024
# To Do
?
Controllable Simulations
ML4PS2024
By carol cuesta
ML4PS2024
- 16