Big Data Cosmology meets AI

IAIFI Fellow

Carolina Cuesta-Lazaro

 

AstroAI Workshop - 20th June 2024

Video Credit: N-body simulation Francisco Villaescusa-Navarro

The era of Big Data Cosmology

1-Dimensional

Machine Learning

Secondary anisotropies

Galaxy formation

Intrinsic alignments

Dust

xAstrophysics

DESI, DESI-II, Spec-S5

Euclid

LSST

Simons Observatory

CMB-S4

Ligo

Einstein

LSST

Early Universe Inflation

{\delta_\mathrm{Initial}}

Late Universe

Energy and matter content

Evolution

{\delta_\mathrm{Final}}
\color{darkgray}{\Omega_m}

Dark matter

Dark energy

\color{darkgreen}{w_0, w_a}
\color{darkolive}{H_0}

Hubble Constant

\color{darkred}{\Omega_b}
\color{darkblue}{\sum m_\nu}

Baryons

Neutrino masses

\color{purple}{f_\mathrm{NL}}
\color{darkorange}{n_s}

Non-Gaussianity

Tilt power spectrum

Hubble tension

Beyond the Standard Model

Multifield Inflation

The Universe's forward model

Cosmological (field level) Inference for Galaxy Surveys

DESI

Point clouds and equivariance

Hybrid ML - Physics Simulators

Learning missing physics

Self-supervised representations

Anomaly detection / OOD

A forward model samples the likelihood

\theta

Parameters

Observable

x

DESI

Forward Model

\color{darkgray}{\Omega_m}, \color{darkgreen}{w_0, w_a},\color{purple}{f_\mathrm{NL}}\, ...

Dark matter

Dark energy

Inflation

p(x|\theta) = \int dz p(x,z|\theta)

A 2D animation of a folk music band composed of anthropomorphic autumn leaves, each playing traditional bluegrass instruments, amidst a rustic forest setting dappled with the soft light of a harvest moon

Image credit: DALL·E 3 

 

1024x1024

p(x|\mathcal{C})?
p(x|\mathrm{prompt})
"A point cloud approach to generative modeling for galaxy surveys at the field level" 
Cuesta-Lazaro and Mishra-Sharma 

arXiv:2311.17141

Base Distribution

Target Distribution

  • Sample
  • Evaluate

Siddharth Mishra-Sharma

Fixed Initial Conditions

 Varying Cosmology

Trained on only 5000 positions!

Nayantara Mudur

"Diffusion-HMC: Parameter Inference with Diffusion Model driven Hamiltonian Monte Carlo" 
Mudur, Cuesta-Lazaro and Finkbeiner

in prep

p(\delta_m|\Omega_m, \sigma_8)

CNN

Diffusion

Increasing Noise

p(\sigma_8|\delta_m)
p(\sigma_8|\delta_m + 0.01 \epsilon)
p(\sigma_8|\delta_m + 0.02 \epsilon)
"Diffusion-HMC: Parameter Inference with Diffusion Model driven Hamiltonian Monte Carlo" 
Mudur, Cuesta-Lazaro and Finkbeiner

 

p(x|\mathcal{C})
\mu_\theta(z_t,t)
p(z_T)

Making homogeneous and isotropic Universes

Base Distribution

Denoiser

=
p(
)
p(
p(
)

Invariant

Equivariant

=
p(
)
p(
=
p(
)
p(

All learnable functions

All learnable functions constrained by your data

All Equivariant functions

More data efficient!

Equivariant models

Non-equivariant

SEGNN: arXiv:2110.02905

 

NequIP: arXiv:2101.03164

 

 

p_\phi(\delta_\mathrm{z=127}|\delta_\mathrm{z=0})

1 to Many:

1 \mathrm{Gpc}/h
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Stochastic Interpolants: Bridging arbitrary densities

"Stochastic Interpolants: A Unifying Framework for Flows and Diffusions" 
Albergo, Boffi, Vanden-Eijnden

arXiv:2303.08797

x_1
x_0
\frac{d x_t}{dt} = u_t(x_t)

Flow ODE

x_0
p(x_0)
p(x_1)
x_1
u_t
\frac{d p_t}{dt} = - \left(\nabla u_t p_t \right)(x_t)

Continuity Equation

Regress the velocity field

L_\mathrm{FM} = \mathrm{min} \, \mathbb{E}_{t, p_t(x|x_0)} \left |\left| v^\theta_t(x|x_0) - u_t(x|x_0) \right|\right|^2

Unknown!

x_t = (1 - t) x_0 + t x_1
p_t(x|x_0)
p_0(x|x_0) = \delta_{x_0}
p_1(x|x_0) = p

Boundary Conditions

Conclusions

1. There is a lot of information in galaxy surveys that ML methods can access

2. We can tackle high dimensional inference problems so far unatainable

3. Our ability to simulate will limit the amount of information we can extract

Hybrid simulators, forward models, robustness, unsupervised problems

Dark matter density reconstruction, Initial Conditions, let's get creative!

Field level inference

cuestalz@mit.edu

Cross correlation

Final

<Reconstructed,True>

Scale (k)

Scale (k)

Small

Large

Small

Large

Initial

<Reconstructed,True>

Comparison to Hamiltonian Monte Carlo for Particle Mesh

d(32^3)

AstroAI Workshop2024

By carol cuesta

AstroAI Workshop2024

  • 173