Corentin Cadiou

Framing the Big Picture of Galaxy Star Formation Quenching with JWST & Euclid 2024

Postdoc @ Lund University
Soon “Chargé de recherche” CNRS @ IAP, Paris

Mini-quenching of high-\(z\) \(\gtrsim 10^7\,\mathrm{M}_\odot\) halos & ISM

Side-B: peeking into emission lines

Insights from the MEGATRON* simulation ­— with H. Katz & M. Rey

*MEGATRON: TransforMing Galaxy Formation by REsolvinG the Non-Equilibrium Chemistry And TheRmOdyNamics of the ISM and CGM

Detailed modelling of the ISM and emission lines to constrain (the interplay between) feedback and star formation

Spectra contain a huge amount of information

SFR

SFH

Katz+23

Spectrum of a \(z=8.5\) galaxy

U

Z

Katz+23

*geometry, equilibrium, ISM properties near stars, element abundances

3. Mock spectra &
images

2. Post-processing*

1. Simulation

From intrinsic…

… to observed

\(\text{O\small{II}}\)

\(\text{O\small{I}}\)

\(\text{N\small{I}}\)

\(\text{Mg\small{II}}\)

\(\text{Ne\small{II}}\)

\(\text{CO}\)

\(\rho\)

\(v_r\)

\(\text{O\small{III}}\)

Megatron model [i]

  • Based on RAMSES-RT (Rosdahl+13)
     
  • Out-of-equilibrium chemistry (Katz 23)
    Primordial species: \(\text{H~{\small I}-{\small II}}\), \(\text{He~{\small I}-{\small III}}\), \(e^{-}\)
    Metal ions: \(\text{C~{\small I}-{\small VI}}\), \(\text{N~{\small I}-{\small VII}}\), \(\text{O~{\small I}-{\small VIII}}\), \(\text{Ne~{\small I}-{\small X}}\), \(\text{Mg~{\small I}-{\small X}}\), \(\text{Si~{\small I}-{\small XI}}\), \(\text{S~{\small I}-{\small XI}}\) & \(\text{Fe~{\small I}-{\small XI}} \)
    Molecules: \(\text{H}_2\) & \(\text{CO}\)
     
  • Dust model (Rémy-Ruyer+14)
    Assuming dust-to-gass ratio

     
  • Heating & Cooling out of equilibrium
    photoheating, photoelectric heating, excitation/dissociation heating, primordial, dust recombination, dust-gas collisions, metal lines
    • \(\text{C~{\small I}}\), \(\text{C~{\small II}}\), \(\text{N~{\small II}}\), \(\text{O~{\small I}}\), \(\text{O~{\small III}}\), \(\text{Ne~{\small II}}\), \(\text{Si~{\small I}}\), \(\text{Si~{\small II}}\), \(\text{S~{\small I}}\), \(\text{Fe~{\small I}}\), \(\text{Fe~{\small II}}\) @ \(T<10^4\,\mathrm{K}\)
    • CLOUDY tables @ \(T>10^4\,\mathrm{K}\)

Megatron model [ii]

  • Turbulence-based star formation (Padoan & Nordlund 11, Agertz+21)
    \(\dot{\rho_\star} = \varepsilon_\star\rho/t_\mathrm{ff}\)
    • if \(Z<10^{-6}Z_\odot\) ⇒ Pop. III
    • if \(Z\geq10^{-6}Z_\odot\) ⇒ Pop. I & II, Kroupa
       
  • \(M_\star = 500\,\mathrm{M}_\odot\)
    \(M_{\star,\rm III} \sim 100\,\mathrm{M}_\odot\)
     
  • Feedback (Agertz+21; Rey+23)
    core-collapse SN, type Ia, winds + HN (Nomoto+06).

     
  • Yields (Limongi & Chieffi 18)
    AGB winds (Ritter+18)

Simulated objects

  • MW analogue @ \(z=0\)
     
  • Genetically engineered to form earlier
    ICs generated with genetIC
     
  • 2 main runs
    • constant physical \(\Delta x_\mathrm{min} \approx 20-40\,\mathrm{pc}\)
    • constant comoving \(\Delta x_\mathrm{min}(z=2) = 20\,\mathrm{pc}\)
      \(\Delta x_\mathrm{min}(z=5)=10\,\mathrm{pc}\)

      \(\Delta x_\mathrm{min}(z=14)=4\,\mathrm{pc}\)

fiducial:
few JWST targets

early-forming:
many targets

\(z>8\)

Side quest:

if you have an unusual formation history to test, we can simulate it!

(side quest): causal origin of (morphological) quenching

\(M_\star = 10^{11}\,\mathrm{M_\odot}\) @ \(z=2\) galaxy
different ang. mom history (ask me for details!)

Low tides

High tides

\(\mathcal{B}\searrow\)

\(R_\mathrm{eff} \nearrow \)

\(v/\sigma\nearrow\)

See Cadiou+21a, and Cadiou+21b; Storck, CC+24

\(2\times\) too massive at high \(z\)

⇒ we need more regulation

Vintergatan: Agertz+21

Mass evolution: Megatron vs. Vintergatan

Mine

My current boss'

1. Single-halo setup: massive dwarf

\(M_\mathrm{DM} \approx 10^{8}\,\mathrm{M_\odot}\)
to \(z=6\)

Merger

1. Single-halo setup: massive dwarf

\(M_\mathrm{DM} \approx 10^{9}\,\mathrm{M_\odot}\) at \(z=6\)

Strong feedback

⇒ removes cold gas

⇒ \(\sim100\,\mathrm{Myr}\) mini-quenching

Increasing feedback strength

\(T<500\,\mathrm{K}\)

\(2\times 10^{51}\,\mathrm{erg/SN}\)

\(4\times 10^{51}\,\mathrm{erg/SN}\)

\(5\times 10^{51}\,\mathrm{erg/SN}\)

1. Single-halo setup: varying \(E_\mathrm{SN}\)

With hypernovae

With Ly\(\alpha\) rad. pressure

1. Single-halo setup: varying feedback channels

⇒ Stronger feedback heats up/expells cold gas \(T<500\,\mathrm{K}\)

1. Single-halo setup: signature of FB?

High \(T_\mathrm{e^-}\)

Lower \(T_\mathrm{e^-}\)

⇒ Exciting opportunities to relate
ISM to feedback with NIRSPEC!

1. Single-halo setup: signature of FB?

⇒ Exciting opportunities to relate
ISM to feedback with NIRSPEC!

Varying feedback

Varying star formation recipe

See Nicolas' talk yesterday

2. Quenching of more massive halos?

 

Focus : halos \(M_\mathrm{DM} = 10^8-10^{10}\,\mathrm{M_\odot}\)
at \(z=10\)

⇒ Mini-quenching

\(M_\star \lesssim 10^8\,\mathrm{M_\odot}\) for \(\sim 50-100\,\mathrm{Myr}\)

 

iff feedback is strong enough

Increasing mass

Mini-quenching? Napping?

3. Even more massive?

 

Focus : halos \(M_\mathrm{DM} = 10^{10}-10^{11}\,\mathrm{M_\odot}\) at \(z=6\)

⇒ No SNe quenching in this mass range?

SNe quenching - SPICE simulation (Bhagwat+24)

\(M_\mathrm{DM}=3\times 10^{11}\,\mathrm{M}_\odot\) at \(z=5\)

\(M_\star= 10^{8.5}\,\mathrm{M}_\odot\) at \(z=5\)

Plenty others in bursty/HN channels

3. Massive end : peeking into other sims

AGN quenching - FLARES simulation (Lovell+20)

AGN quenching - THESAN simulation (Kannan+22) (no ISM)

Conclusions

  • Low-mass quenching within our uncertainties
    Strong SNe (Hypernovæ, top-heavy IMF, Ly\(\alpha\)) ⇒ mini-quenching
     
  • Maybe high-mass quenching w/out AGN is possible
     
  • Different feedback (quenching?) channels ⇒ different line ratios
    ISM thermodynamics matter, direct obs.

Open questions

  • Observational constraints on FB processes to understand quenching?
     
  • “Easy” to generate mocks → how to make the simulations most useful? How to pin down quenching?
     
  • Can we learn anything from combined IFU data?

Conclusions

  • Low-mass quenching within our uncertainties
    Strong SNe (Hypernovæ, top-heavy IMF, Ly\(\alpha\)) ⇒ mini-quenching
     
  • Maybe high-mass quenching w/out AGN is possible
     
  • Different feedback (quenching?) channels ⇒ different line ratios
    ISM thermodynamics matter, direct obs.

Open questions

  • Observational constraints on FB processes to understand quenching?
     
  • “Easy” to generate mocks → how to make the simulations most useful? How to pin down quenching?
     
  • Can we learn anything from combined IFU data?

Katz 22

Today's talk, in a nutshell

(My) route to high-\(z\) kinematics

 

  • Effect of cosmo. env. (Musso+19, Kraljic+20,21, Cadiou+21, Storck+24)
  • Cosmology-galaxy connection (Cadiou+21)
  • Cosmological accretion (Cadiou+19, Kocjan+24)
  • But what are we actually observing? This talk

Low grav. tides

Large grav. tides

  • cosmological environment      \(\sim 50-100\,\mathrm{Mpc}\)
  • resolve Strömgren spheres     \(\sim 10\,\mathrm{pc}\)
  • radiative-transfer
  • proper multi-phase ISM           \(T \lesssim 10^4\,\mathrm{K}\)
  • Track ion abundances out-of-equilibrium

Wishlist for proper modelling of emission lines + kinematics

Background: Vintage Gordon (follow-up of Vintergatan) simulation
(PI: Cadiou)

\(t_\mathrm{chem} \propto 1/n^2\)

\(t_\mathrm{dyn} \propto 1/\sqrt{n}\)

\(t_\mathrm{burst} \sim 10-100\,\mathrm{Myr}\)

How we typically model emission lines

Lots of assumptions

(equilibrium, geometry, element abundances, …)

See Aniket's talk (I guess?)

\(\rho, T, Z,v\)
sometimes \(n_\mathrm{H}, n_{\mathrm{HI}}, n_\mathrm{HeI}, n_\mathrm{HeII},n_\mathrm{HeIII},\)

 

Processes that control ion and molecular properties:

  • Collisional, photo, cosmic-ray ionization
  • Radiative, dielectronic, dust recombination
  • Charge exchange

RAMSES-RTZ + PRISM: Non-equilibrium chemistry coupled to on-the-fly radiative transfer

 

Processes that control gas temperature:

  • Cosmic-ray, photo, photo-electric, H2, dust heating
  • Primordial, \(\mathrm{H}_2\), CO, metal, dust* recombination, dust-gas collisional cooling
  • Adiabatic (expansion), shocks (e.g. SN, turbulence), gravitational, etc.

Image: Cadiou/Katz/Rey+in prep

  • Early forming MW mass galaxy
  • \(1.6\times 10^{4}\mathrm{M}_\odot\) DM, \(500\, \mathrm{M}_\odot\) Pop. II stars, individual Pop III stars, \(1\, \mathrm{pc}\) resolution at first star formation
  • IMF sampled chemical enrichment from individual stars for all relevant elements
  • SN (CC, Ia, HN, PISN), Winds → follows Vintergatan (validated for MW galaxies at z = 0)
  • 82 species chemistry coupled to 8 bin RT
  • PRISM ISM model
  • Enhanced resolution in the CGM
  • Calibration sims with IMF variations and physical model variations

Introducing MEGATRON

Halo-mass—stellar-mass relation

VG: Vintergatan (Agertz+21)
⇒ Well-regulated by \(z=0\)

High-resolution early \(<1\mathrm{pc}\)

Constant resolution \(\sim 20\,\mathrm{pc}\)

Most massive galaxy, edge-on

Most massive galaxy, face-on

Difference \([\mathrm{C{\small{II}}}]\)-weighted vs. \(n_\mathrm{H}\)-weighted

Early results

Stacked profiles

36 galaxies @ \(z=10\)

\(8.3\leq\log(M_\star/\mathrm{M}_\odot)\leq 10.0\)

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

⚠️ PRELIMINARY ⚠️

Only gas within \(\pm0.5\,\mathrm{kpc}\) height

All gas

Random discussion points:

“All simulations are wrong, but some are useful”
                                    George “Simulation” Box
 

  • How should the complex kinematics be modelled at high-\(z\)?
    Non-axisymmetric structures → tilted rings not valid? What about inflows/outflows/extra-planar motions?
     
  • Do we really need out-of-equilibrium thermochemistry?
    If we do in simulation, probably also required in observation
    Likely \(z\) dependent (stay tuned!)

     
  • How can we help observers and vice versa?
    Fairly easy to generate density/velocity maps, but what's needed?

Does non-equilibrium cooling matter?

Switching to equilibrium cooling

  • same stellar mass, but
  • ISM has much less cold gas

Katz 22

Results from Eddie

Cosmic breakfast, 2nd breakfast and elevenses challenges

Harikane+24

FOOD, Wilkins+24

Cullen+24

Cameron+24

For a better intro
see Zack's presentation

Cosmic breakfast, 2nd breakfast and elevenses challenges

What kinematics do emission lines track?

What's the Ly-\(\alpha\) escape fraction?

How to infer SFR history when spectra dominated by emission lines?

What's the structure of cold inflows?

Outflow rates?

[…]

Harikane+24

Cullen+24

Cameron+24

Me

Tracer particles

High-cadence sampling

Puns

Martin Rey

Pop II modeling

Cooling length refinment

ICs generation

Harley Katz

RAMSES-RTZ

Pop III modeling

Calibrations

Stellar mass vs. Halo mass

CP not too bad compared to Vintergatan (Rey+23)
CC underregulates

Constant comoving

Constant physical

Varying IMF to the rescue?

Same model, but high-\(z\) dwarf \(M_\mathrm{dm}=10^{9}\,\mathrm{M}_\odot\) at \(z=6\)

Pop. III star formation

Pop. III star formation

Pop. II

Pop. III

Cooling length refinment

Refining where

\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times \dfrac{1}{\Lambda_\mathrm{net}},\)

(Rey+23)

  • up to \(80\,\mathrm{pc}\)
  • turned on at key moments

\(\Delta x = 80\,\mathrm{pc}\)

Before

After

Cooling length refinment

Refining where

\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times \dfrac{1}{\Lambda_\mathrm{net}},\)

(Rey+23)

  • up to \(80\,\mathrm{pc}\)
  • turned on at key moments

\(z=5.8\)

\(z=5.8(+2\,\mathrm{Myr})\)

\(20\,\mathrm{kpc}\)

Cooling length refinment

How much does it cost?

\(\times 3\)

\(\times 70\)!

Detailed modelling of the ISM and emission lines

By Corentin Cadiou

Detailed modelling of the ISM and emission lines

Framing the Big Picture of Galaxy Star Formation Quenching with JWST & Euclid

  • 98