pollev.com/chrismakler

Characteristics of Utility Functions

Christopher Makler

Stanford University Department of Economics

Econ 50: Lecture 6

Today's Agenda

  • Analyze properties of preferences and utility
  • Look at some specific utility functions and the preferences they represent

Desirable Properties of Preferences

We've asserted that all (rational) preferences are complete and transitive.

There are some additional properties which are true of some preferences:

  • Monotonicity
  • Convexity
  • Continuity
  • Smoothness

Monotonic Preferences: “More is Better"

\text{For any bundles }A=(a_1,a_2)\text{ and }B=(b_1,b_2)\text{, }A \succeq B \text{ if } a_1 \ge b_1 \text{ and } a_2 \ge b_2
\text{In other words, all marginal utilities are positive: }MU_1 \ge 0, MU_2 \ge 0

Nonmonotonic Preferences and Satiation

Some goods provide positive marginal utility only up to a point, beyond which consuming more of them actually decreases your utility.

Strict vs. Weak Monotonicity

Strict monotonicity: any increase in any good strictly increases utility (\(MU > 0\) for all goods)

Weak monotonicity: no increase in any good will strictly decrease utility (\(MU \ge 0\) for all goods)

Example: Pfizer's COVID-19 vaccine has a dose of 0.3mL, Moderna's has a dose of 0.5mL

Goods vs. Bads

\text{Good: }MU > 0
\text{Bad: }MU < 0

Convex Preferences: “Variety is Better"

Take any two bundles, \(A\) and \(B\), between which you are indifferent.

Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?

If you would always answer yes, your preferences are convex.

Concave Preferences: “Variety is Worse"

Take any two bundles, \(A\) and \(B\), between which you are indifferent.

Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?

If you would always answer no, your preferences are convex.

Common Mistakes about Convexity

1. Convexity does not imply you always want equal numbers of things.

2. It's preferences which are convex, not the utility function.

Other Desirable Properties

Continuous: utility functions don't have "jumps"

Smooth: marginal utilities don't have "jumps"

Counter-example: vaccine dose example

Counter-example: Leontief/Perfect Complements utility function

Well-Behaved Preferences

If preferences are strictly monotonic, strictly convex, continuous, and smooth, then:

Indifference curves are smooth, downward-sloping, and bowed in toward the origin

The MRS is diminishing as you move down and to the right along an indifference curve

Good 1 \((x_1)\)

Good 2 \((x_2)\)

"Law of Diminishing MRS"

Preferences over Soda

Suppose one liter of soda gives you 20 "utils" of utility; so each one-liter bottle (good 1) gives you 20 utils,
and each two-liter bottle (good 2) gives you 40 utils.

Which other bundles give you the same utility as
12 one-liter bottles and 6 two-liter bottles (A)?

Which other bundles give you the same utility as
12 one-liter bottles and 2 two-liter bottle (B)?

12

24

Any combination that has 24 total liters

Any combination that has 16 total liters

16

20

4

8

12

24

16

20

4

8

A

B

pollev.com/chrismakler

Preferences over Soda

Suppose one liter of soda gives you 20 "utils" of utility; so each one-liter bottle (good 1) gives you 20 utils,
and each two-liter bottle (good 2) gives you 40 utils.

Which other bundles give you the same utility as
12 one-liter bottles and 6 two-liter bottles (A)?

Which other bundles give you the same utility as
12 one-liter bottles and 2 two-liter bottle (B)?

Any combination that has 24 total liters

Any combination that has 16 total liters

What utility function represents these preferences?

Perfect Substitutes

Goods that can always be exchanged at a constant rate.

  • Red pencils and blue pencils, if you con't care about color

  • One-dollar bills and five-dollar bills

  • One-liter bottles of soda and two-liter bottles of soda

u(x_1,x_2) = ax_1 + bx_2

Preferences over Tea and Biscuits

Charlotte always has 2 biscuits with every cup of tea;
if she has a plate of biscuits and one cup of tea, she'll only eat two. (And if she has a whole pot of tea and 6 biscuits, she'll stop pouring after 3 cups of tea.)

Each (cup + 2 biscuits) gives her 10 utils of joy.

Which other bundles give her the same utility as
3 cups of tea and 4 biscuits (A)?

Which other bundles give her the same utility as
1 cup of tea and 4 biscuits (B)?

3

6

Any combination that has 4 biscuits
and 2 or more cups of tea

Any combination that has 1 cup of tea and
at 2 or more biscuits

4

5

1

2

3

6

4

5

1

2

A

B

pollev.com/chrismakler

What utility function represents these preferences?

Preferences over Tea and Biscuits

Charlotte always has 2 biscuits with every cup of tea;
if she has a plate of biscuits and one cup of tea, she'll only eat two. (And if she has a whole pot of tea and 6 biscuits, she'll stop pouring after 3 cups of tea.)

Each (cup + 2 biscuits) gives her 10 utils of joy.

Which other bundles give her the same utility as
3 cups of tea and 4 biscuits (A)?

Which other bundles give her the same utility as
1 cup of tea and 4 biscuits (B)?

Any combination that has 4 biscuits
and 2 or more cups of tea

Any combination that has 1 cup of tea and
at 2 or more biscuits

Perfect Complements

Goods that you like to consume
in a constant ratio.

  • Left shoes and right shoes

  • Sugar and tea

u(x_1,x_2) = \min \left\{\frac{x_1}{a},\frac{x_2}{b}\right\}

Cobb-Douglas

An easy mathematical form with interesting properties.

  • Used for two independent goods (neither complements nor substitutes) -- e.g., t-shirts vs hamburgers

  • Also called "constant shares" for reasons we'll see later.

u(x_1,x_2) = a \ln x_1 + b \ln x_2
u(x_1,x_2) = x_1^ax_2^b

Quasilinear

Generally used when Good 2 is
"dollars spent on other things."

  • Marginal utility of good 2 is constant

  • If good 2 is "dollars spent on other things," utility from good 1 is often given as if it were in dollars.

\text{e.g., }u(x_1,x_2) = \sqrt x_1 + x_2 \text{ or }u(x_1,x_2) = \ln x_1 + x_2
u(x_1,x_2) = v(x_1) + x_2

Concave

The opposite of convex: as you consume more of a good, you become more willing to give up others

  • MRS is increasing in \(x_1\) and/or decreasing in \(x_2\)

  • Indifference curves are bowed away from the origin.

e.g., u(x_1,x_2) = ax_1^2 + bx_2^2

Satiation Point

There is some ideal bundle; utility falls off as you move away from that bundle

  • Not monotonic

  • Realistic, but often the satiation point is far out of reach.

e.g., u(x_1,x_2) = 100 - (x_1 - 10)^2 - (x_2 - 10)^2

“Semi-Satiated"

One good has an ideal quantity; the other doesn't

  • Can be a combination of quasilinear and satiation point

  • Can generate the familiar linear demand curve

e.g., u(x_1,x_2) = 100 - (x_1 - 10)^2 + x_2

Normalizing Utility Functions

One reason to transform a utility function is to normalize it.
This allows us to describe preferences using fewer parameters.

u(x_1,x_2) = ax_1 + bx_2
{1 \over a + b} u(x_1,x_2) = {a \over a + b}x_1 + {b \over a + b}x_2
\hat u(x_1,x_2) = \alpha x_1 + (1 - \alpha)x_2

[ multiply by \({1 \over a + b}\) ]

[ let \(\alpha = {a \over a + b}\) ]

= {a \over a + b}x_1 + \left [1 - {a \over a + b}\right]x_2

Summary

Part I: properties of preferences,
and how preferences can be represented by utility functions.

Next: see examples of utility functions,
and examine how different functional forms
can be used to model different kinds of preferences.

Take the time to understand this material well. 
It's foundational for many, many economic models.

Econ 50 | Spring 23 | Lecture 6

By Chris Makler

Econ 50 | Spring 23 | Lecture 6

Preferences and Utility Functions

  • 517