SLAM With Kalman Filtered Odometry in O(1)

Antrittsvortrag zur Masterarbeit

Aufgabensteller: Prof. Dr. Kranzlmüller

Betreuer: Tobias Fuchs

Datum des Vortrags: 20.02.2019

Autonomous Driving

1

Real track

Seen track

UAS Munich Team

2

Combustion

Since 2006

Electrical

Since 2010

Driverless

Since 2017

Interdisciplinary team of 100+ students from UAS Munich & LMU

Simulatenous Localization and Mapping

3

Sensors

Localization

Mapping

Estimated Position

Environmental Map

Autonomous Pipeline

4

Visual Sensor

Neural Network

SLAM

Trajectory

Planning

Velocity Sensor

Accelerometer

Vehicle

Control Unit

Sensors

Preprocessing

Planning

Excecution

Master Thesis

Problem Statement

5

How can heterogeneous sensor inputs with different real-time properties be combined in a SLAM process component with deterministic behavior and improved precision?

Time Complexity

6

$$\mathcal{O}(1)$$

Localization:

feasible using a Kalman filter and deterministic resource reclamation

$$\mathcal{O}(1)$$

Mapping:

feasible within regulatory contraints using a Gaussian Mixture Model

Methodology

7

  • Reference SLAM implementation
    • Sensor fusion with differing soft/hard real-time clocks
    • Design of a Kalman Filter for an improved estimatimation
    •            computational time complexity
  • Tuning and evaluation in simulated scenarios
  • Evalution in a real world scenario (FSItaly and FSGermany)

$$\mathcal{O}(1)$$

Backup #1: Data Assocation

8

Backup #2: Improved Localization

9

Backup #3: Visual Odometry

10

Backup #4: Hardware Overview

11

hard realtime

soft realtime

Backup #5: Cars Overview

12

FSAustria

2017

Business Plan

FSAustria

2017

Acceleration

FSGermany

2017

Gesamt

#3

#1

#1

FSItaly

2018

FSGermany

2018

Acceleration

FSGermany

2018

Gesamt

#5

#2

#2

Gesamt

Acceleration 0-100km/h: 2.1s

SLAM with Kalman filtered odometry in O(1)

By cirquit

SLAM with Kalman filtered odometry in O(1)

Antrittsvortrag

  • 92