Plasticity & Shear bands

 

  • a quick overview of past results
  • constitutive models
  • underworld results
  • future directions

Plasticity & Shear bands

 

Spiegelman, Marc, Dave A. May, and Cian R. Wilson. "On the solvability of incompressible Stokes with viscoplastic rheologies in geodynamics." Geochemistry, Geophysics, Geosystems 17.6 (2016): 2213-2238.

  • Newton's method can substantially reduce the residual compared to point iterations
  • macroscopic Shear band angle has little dependence on the angle of internal friction
  • Drucker-Prager model won't converge if pressure-sensitivity of deviatoric stress is too -high,
  • problems that arise from combining dynamic pressure-dependent rheologies with incompressible Stokes where the dynamic pressure enforces the incompressibility constraint.

 

  • a quick overview of past results

Plasticity & Shear bands

 

Kaus, Boris JP. "Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation." Tectonophysics 484.1 (2010): 36-47.

  • Coulomb orientation only occurs if the heterogeneity, which induces this shear band, is resolved with a sufficiently large numerical resolution. 

 

  • a quick overview of past results

Plasticity & Shear bands

 

Lemiale, V., et al. "Shear banding analysis of plastic models formulated for incompressible viscous flows." Physics of the Earth and Planetary Interiors 171.1 (2008): 177-186.
APA    

 

  • It is found that the so-called Roscoe solution and Coulomb solution are both admissible solutions for the Drucker-Prager model
  • mesh must be sufficiently refined in order to capture the Coulomb orientation numerically.
  • use of a viscous layer underneath causes the localization to be less pronounced than in the present work, making the strain rate invariant field somewhat more diffuse

 

  • a quick overview of past results

Plasticity & Shear bands

 

  • Drucker-Prager model:
  • constitutive models
\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
τIIA+B(Plith+α(P))Y\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
\tau_{II} = \sqrt{\frac{1}{2}\tau_{ij}:\tau_{ij} }
τII=12τij:τij\tau_{II} = \sqrt{\frac{1}{2}\tau_{ij}:\tau_{ij} }
\tau_{ij} = 2\eta\epsilon_{ij} = \eta[\nabla u + \nabla u^T]
τij=2ηϵij=η[u+uT]\tau_{ij} = 2\eta\epsilon_{ij} = \eta[\nabla u + \nabla u^T]

Plasticity & Shear bands

 

  • Mohr-Coulomb model (Underworld2 implementation):
  • constitutive models
\tau_{s} \leq tan( \phi) \sigma_n + C
τstan(ϕ)σn+C \tau_{s} \leq tan( \phi) \sigma_n + C
\tau_{ij} = 2\eta\dot \epsilon_{ij} - 2(\eta-\eta_s) \Lambda_{ijlm} \dot \epsilon_{ij}
τij=2ηϵ˙ij2(ηηs)Λijlmϵ˙ij\tau_{ij} = 2\eta\dot \epsilon_{ij} - 2(\eta-\eta_s) \Lambda_{ijlm} \dot \epsilon_{ij}
2\eta_s = \frac{\tan \phi (2\eta n_k n_l \dot \epsilon_{kl} - p) + c}{\dot \gamma}
2ηs=tanϕ(2ηnknlϵ˙klp)+cγ˙2\eta_s = \frac{\tan \phi (2\eta n_k n_l \dot \epsilon_{kl} - p) + c}{\dot \gamma}
\dot \gamma = n_i \dot \epsilon_{ij}s_j
γ˙=niϵ˙ijsj\dot \gamma = n_i \dot \epsilon_{ij}s_j

Plasticity & Shear bands

 

  • Mohr-Coulomb model (Underworld2 implementation):
  • constitutive models
\tau_{s} \leq tan( \phi) \sigma_n + C
τstan(ϕ)σn+C \tau_{s} \leq tan( \phi) \sigma_n + C
\dot n_i = L_{ji} n_j
n˙i=Ljinj\dot n_i = L_{ji} n_j
  • Choose the slip plane that maximises:

Plasticity & Shear bands

 

  • Drucker-Prager model
  • Isotropic
  • Coaxial?
  • How do macroscopic shear bands 'know' what angle to form at?
  • Coulomb angle results in the fastest rate of pressure reduction within the shear band  
  • constitutive models
\pm \left( \frac{\pi}{4} + \frac{\phi}{2} \right)
±(π4+ϕ2)\pm \left( \frac{\pi}{4} + \frac{\phi}{2} \right)

Plasticity & Shear bands

 

  • underworld2 - Drucker Prager
  • Questions:
  • what is the convergence behaviour transversely isotropic model?
  • Can pseudo-compressibility help smooth the dynamic pressure?
  • Is a Newton scheme required?

Plasticity & Shear bands

 

  • underworld2 - Drucker Prager
  • Questions:
  • Is a Newton scheme required?

Plasticity & Shear bands

 

  • underworld2 - Drucker Prager
\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
τIIA+B(Plith+α(P))Y\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
  • Questions:
  • what is the convergence behaviour transversely isotropic model?

Plasticity & Shear bands

 

  • underworld2 - Mohr Coulomb (trans. isotropic)
\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
τIIA+B(Plith+α(P))Y\tau_{II} \leq A + B (P_{lith} + \alpha(P')) \leq Y
  • Questions:
  • what is the convergence behaviour transversely isotropic model?

deck

By Dan Sandiford

deck

  • 621